
ALMA, an international astronomy facility, is a partnership of ESO (representing its member states), NSF (USA) and NINS

(Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the

Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ.

ALMA Science Pipeline User’s Guide for
CASA 4.7.0
Interferometric and Single-Dish Data

Doc 4.13, ver. 1 | October, 2016

For further information or to comment on this document, please contact your regional Helpdesk through the ALMA User

Portal at www.almascience.org. Helpdesk tickets will be directed to the appropriate ALMA Regional Center at ESO,

NAOJ or NRAO.

Version Date Editors

3.13v1.0 CASA 4.5.1 January 2016 Pipeline Team

4.13v1.0 CASA 4.7.0 October 2016 Pipeline Team

In publications, please refer to this document as:
ALMA Pipeline Team, 2016, ALMA Science Pipeline User’s Guide, ALMA Doc 4.13v1.0

	Table	of	contents	
1	 The	ALMA	Science	Pipeline	...	3	

1.1	 Purpose	of	this	document	...	3	
1.2	 Pipeline	Overview	...	3	

2	 What’s	New	in	Cycle	4	..	4	

3	 Cycle	4	Pipeline	Version	..	5	
3.1	 Pipeline	&	CASA	Versions	..	5	
3.2	 Obtaining	the	Pipeline	...	5	

4	 Pipeline-related	Documentation	...	5	

5	 ALMA	Interferometric	Data	..	6	
5.1	 Restoring	IF	Pipeline	calibration	using	scriptForPI.py	...	6	
5.2	 Re-running	Pipeline	calibration	tasks	using	casa_pipescript.py	..	6	

5.2.1	 Rerun	Pipeline	manually	using	casa_pipescript.py	directly	..	8	
5.2.2	 Reproduce	Pipeline	run	using	scriptForPI.py	..	9	

5.3	 Running	Imaging	tasks	...	9	
5.3.1	 For	manually	imaged	deliveries	..	9	
5.3.2	 For	pipeline	imaged	deliveries	..	9	

5.4	 Modifying	the	Pipeline	Run	...	10	
5.4.1	 Removing	ASDMs	from	the	processing	..	10	
5.4.2	 Introducing	additional	flagging	during	calibration	...	10	
5.4.3	 Editing	calibrator	fluxes	used	by	the	Pipeline	..	10	
5.4.4	 Manipulating	the	Pipeline	Context	...	10	
5.4.5	 Modifying	the	Pipeline	Imaging	Commands	...	11	

6	 ALMA	Single	Dish	(Total	Power)	Data	...	11	
6.1	 Re-running	Pipeline	calibration	tasks	using	scriptForPI.py	...	11	
6.2	 Re-running	Pipeline	calibration	tasks	using	casa_pipescript.py	..	12	
6.3	 Manual	Imaging	after	running	casa_pipescript.py	...	12	
6.4	 Modifying	the	Pipeline	Run	...	12	

7	 The	Pipeline	WebLog	..	13	
7.1	 Overview	...	13	
7.2	 Navigation	...	14	
7.3	 Home	Page	..	14	

7.3.1	 Measurement	set	Overview	pages	...	15	
7.4	 By	Topic	Summary	Page	..	16	
7.5	 By	Task	Summary	Page	..	16	

7.5.1	 CASA	logs	and	scripts	..	17	
7.6	 Task	Pages	...	18	

7.6.1	 Task	sub-pages	and	plot	filtering	..	19	
7.7	 WebLog	Quality	Assessment	(QA)	Scoring	...	21	

7.7.1	 Interferometric	Pipeline	QA	Scores	..	21	
7.7.2	 Single-Dish	Pipeline	QA	scores	...	24	

8	 The	“By	task”	WebLog	for	Interferometric	Data	..	25	

	

	

2	

8.1	 hifa_importdata	..	25	
8.2	 hifa_flagdata	...	25	
8.3	 hifa_fluxcalflag	..	25	
8.4	 hif_rawflagchans	...	25	
8.5	 hif_refant	..	27	
8.6	 hifa_tsyscal	...	27	
8.7	 hifa_tsysflag	..	27	
8.8	 hifa_antpos	...	29	
8.9	 hifa_wvrgcalflag	..	29	
8.10	 hif_lowgainflag	..	29	
8.11	 hif_gainflag	...	30	
8.12	 hif_setjy	..	30	
8.13	 hifa_bandpass	...	30	
8.14	 hifa_spwphaseup	..	31	
8.15	 hifa_gfluxscale	..	31	
8.16	 hifa_timegaincal	..	31	
8.17	 hif_applycal	...	31	
8.18	 hif_makeimlist:	Set-up	parameters	for	calibrator	images	..	31	
8.19	 hif_makeimages:	Make	calibrator	images	..	32	
8.20	 hif_exportdata	..	32	
8.21	 hif_mstransform	...	32	
8.22	 hifa_flagtargets	...	32	
8.23	 hif_makeimlist:	Set-up	parameters	for	target	per-spw	continuum	imaging	32	
8.24	 hif_findcont	...	33	
8.25	 hif_uvcontfit	...	33	
8.26	 hif_uvsub	..	34	
8.27	 hif_makeimages:	Make	target	per-spw	continuum	images	..	34	
8.28	 hif_makeimlist:	Set-up	parameters	for	target	aggregate	continuum	images	35	
8.29	 hif_makeimages:	Make	target	aggregate	continuum	images	...	35	
8.30	 hif_makeimlist:	Set-up	image	parameters	for	target	cube	imaging	35	
8.31	 hif_makeimages:	Make	target	cubes	...	36	
8.32	 hif_exportdata	..	37	

9	 The	“By	task”	WebLog	for	Single-Dish	Data	..	37	
9.1	 hsd_importdata	...	37	
9.2	 hsd_flagdata	...	37	
9.3	 hifa_tsyscal	...	38	
9.4	 hifa_tsysflag	..	38	
9.5	 hsd_skycal	...	38	
9.6	 hsd_k2jycal	...	38	
9.7	 hsd_applycal	...	38	
9.8	 hsd_baseline	...	39	
9.9	 hsd_blflag	...	41	
9.10	 hsd_imaging	..	42	

	

	

	

3	

1 The ALMA Science Pipeline
1.1 Purpose of this document
The ALMA Science Pipeline is being developed for the automated processing of ALMA
interferometry and single-dish data, and for the combination of data taken using multiple ALMA
arrays. The Cycle 4 Pipeline is commissioned for the calibration of “standard mode” ALMA
interferometry datasets (see Sec. 5.2 of the Cycle 4 Proposer’s Guide), for the provision of
diagnostic calibrator images, and for preliminary science target imaging (using a simple clean
mask and shallow clean, potentially for only a subset of science targets). It is also commissioned
for the end-to-end calibration and imaging of ALMA Single-Dish data acquired from Cycle 3
onwards. Combined science target imaging for interferometric data taken from multiple arrays is
not yet commissioned, nor is pipeline processing of “non-standard mode” observations.

This document describes how to obtain the ALMA Pipeline, how to use it to calibrate ALMA
interferometric (IF) and single-dish (SD) data, and a description of the Pipeline WebLog
(collection of web pages with diagnostic information describing the pipeline run). Since
interferometric and single-dish data are calibrated and imaged using different procedures and
diagnostics, their recalibration procedures and WebLogs are described separately.

1.2 Pipeline Overview
The Pipeline calibrates and (optionally, in the case of interferometric data) images ALMA data
automatically using Pipeline tasks. ALMA datasets are comprised of all of the individual
executions that result from completing a Scheduling Block (SB) (provided they pass QA0). An
individual execution is called an ASDM (for ALMA Science Data Model), and the collection of
ASDMs from a single SB are collected into a data structure called a Member Observing Unit
Sets (MOUS). See Chapter 10 of the ALMA Technical Handbook for details.

Pipeline tasks use CASA tasks wherever possible to perform the data reduction, and Pipeline
tasks can be viewed and executed within CASA in exactly the same way as CASA tasks. For
example, in a CASA version also containing the Pipeline, view the possible inputs for the task
hifa_importdata by typing inp hifa_importdata. To see all the tasks available in
CASA, type tasklist.

The Pipeline is data-driven: i.e. the characteristics of each dataset drive the calibration and
imaging strategy (the Pipeline Heuristics). During the Pipeline run, critical information (for
example, which calibration tables are used) are stored in the pipeline Context. Both the
Heuristics and the Context are implemented as python classes.

In order to determine if the Pipeline was used in the processing of an ALMA dataset, please
consult the README file in the data delivery package. Some projects may contain a mix of both
manually and Pipeline-calibrated data.

	

	

4	

2 What’s New in Cycle 4
New features of the Cycle 4 pipeline include:

• The interferometric calibration pipeline has a low signal-to-noise heuristic that will
calculate the temporal phase variations by combining spectral windows (stage
hifa_spwphaseup).

• The Interferometry Pipeline now includes science target imaging, as well as including
“check sources” in the calibrator imaging stage and improved calibrator quality
assurance scores.

• The Single-dish Pipeline has been refactored to use Measurement Set rather than scan
table format.

• There are improved defaults for the hif_gainflag task.

• Files previously exported as .tar.gz are now exported as .tgz.

Known limitations of the Cycle 4 pipeline include:

• No flux equalization between the different executions of multi-epoch observations.

• No automated science target flagging (although a flag template file is available for
pipeline to apply manually identified flags).

• The frequency ranges for interferometric continuum identification and subtraction are
done in an automated manner that works well over a very broad range of observing
modes and source properties. In some cases (e.g. hot core line emission, noisy
broadband continuum), it is expected that better results can be obtained by more careful
examination of individual sources and/or spectral windows.

• The frequency ranges for single dish line identification and spectral baseline subtraction
are done in an automated manner that has been optimized to detect moderate channel
width (wider than 100 channels) emission lines at the center of a spectral window. It is
expected that better results can be obtained by more careful examination of individual
sources and/or spectral windows. The following cases are most strongly affected:
§ Narrow emission lines (less than 100 channels wide), especially in TDM mode.
§ Emission at the edge of spectral window.
§ Cubes with a “forest” of emission lines.

• Science target deconvolution is done with a generic mask and shallow dynamic-range
limited clean thresholds, meaning that images with moderate to strong emission will
benefit from more carefully defined masks and deeper cleaning thresholds.

• The clean may terminate early if a (conservative) divergence criteria is met (warning is
given in WebLog).

• The pipeline does not include science target self-calibration. Therefore, the pipeline
imaging products of bright sources may be dynamic range limited.

	

	

5	

• The interferometric imaging pipeline commands should work with measurement sets
calibrated outside the pipeline, but this has not been tested extensively and may have
as-yet undetermined failure modes.

A list of pipeline “known issues” is available on the ALMA Science Portal:
http://almascience.org/documents-and-tools/pipeline-documentation-archive. This will be
updated as issues are discovered during the cycle.

3 Cycle 4 Pipeline Version
3.1 Pipeline & CASA Versions
The pipeline tasks have a specific version number, and are bundled with a specific version of
CASA. These versions are reported in the README file that is archived with the pipeline data
products, and are also reported on the Home page of the WebLog for each pipeline-processed
dataset (see Figure 5 for an example). For ALMA Cycle 4, the pipeline is released with CASA
4.7.0.

In general, the version of Pipeline+CASA used in ALMA Operations to calibrated and image the
archived data will be the same as the publicly posted pipeline version available from the
“Obtaining CASA” page, but they can be slightly different (e.g. for bugs that have an operational
workaround but which are fixed in the posted public version). There is a “Pipeline Version
Tracker” available from the ALMA Science Portal at https://almascience.nrao.edu/documents-
and-tools/pipeline-documentation-archive#version, which lists the versions of CASA+Pipeline
used in ALMA Operations as well as the versions which should be used for any restoring or
reprocessing of the data from the same cycle (as described elsewhere in this document).

3.2 Obtaining the Pipeline
A download of CASA 4.7.0 that includes the ALMA pipeline is available, along with installation
instructions, from the Pipeline section of the Documents & Tools page of the ALMA Science
Portal: (http://www.almascience.org/). If any issues are encountered with CASA 4.7.0
installation, please contact the ALMA Helpdesk via the link on the ALMA Science Portal.

4 Pipeline-related Documentation
The User documentation currently relating to Pipeline is available from the ALMA Science Portal
at http://almascience.org/documents-and-tools/pipeline-documentation-archive. This includes:

• ALMA Science Pipeline User’s Guide: This document.

• ALMA Science Pipeline Reference Manual: Description of individual Pipeline tasks.

In addition, Chapter 13 of the ALMA Technical Handbook describes ALMA pipeline
processing, and the ALMA QA2 Data Products docment for Cycle 4 provides a description of
ALMA data deliveries, including pipeline products. These are also available from the ALMA
Science Portal “Documents and Tools” page at https://almascience.nrao.edu/documents-and-
tools.

	

	

6	

5 ALMA Interferometric Data
ALMA Interferometric data refers to observations obtained with either the 12-m Array or 7-m
Array. This section describes how to reconstitute calibrated interferometric data and how to re-
run interferometric pipeline calibration and imaging commands.

5.1 Restoring IF Pipeline calibration using scriptForPI.py
If the Pipeline was used to calibrate the data, you will find several special files in the "/script"
directory of your delivery package, e.g., script/casa_piperestorescript.py. In order to convert
ALMA raw data (ASDMs) into calibrated Measurement Sets, for example before re-imaging the
data, the script scriptForPI.py should be used. scriptForPI.py directly applies calibration and
flagging tables determined during the ALMA Quality Assurance process to raw data to create
calibrated measurement sets (MS). The instructions for using this script will be in the README
file of the ALMA delivery. Using scriptForPI.py is the recommended and fastest method of
obtaining calibrated ALMA data from the delivery. For deliveries that used the ALMA
pipeline, scriptForPI.py must be run from within a version of CASA that includes the pipeline
tasks, preferably the “User Pipeline” version for the approprate operations version as listed in
the Pipeline Version Tracker (see Sec. 3). In general, this will be very close to the version listed
on the Home Page of the pipeline WebLog (Sec. 7).

The scriptForPI.py calls the script casa_piperestorescript.py. At the present time, the
casa_piperestorescript.py script should not be executed directly. When data calibrated by the
pipeline are restored using scriptForPI.py, additional directories such as calibrated/working and
calibrated/rawdata are created.

5.2 Re-running Pipeline calibration tasks using casa_pipescript.py
Under some circumstances, it is desirable to re-run all of the pipeline tasks from scratch. For
instance, if CASA or pipeline version incompatibilities prevent running the restore as described
in Section 5.1, then re-running the pipeline tasks will also recreate the calibrated MS (and/or
images). This also allows you to change the calibration and flagging from what was performed
during the ALMA Quality Assurance Process.

The complete set of pipeline commands are given in the script casa_pipescript.py. This is a
python script that includes all tasks and parameter values, in the correct sequence, that were
used for the pipeline run. For data that were both calibrated and imaged in the pipeline, the
casa_pipescript.py file will include both the calibration and imaging pipeline commands (a
typical script shown in Figure	 1). In that case, a dummy scriptForImaging.py file may be added
which only contains the note that no manual imaging was carried out. For data that were
calibrated in the pipeline but imaged outside of the pipeline, the casa_pipescript.py file will only
include the calibration pipeline commands; the manual (CASA) imaging commands will be
included in a separate scriptForImaging.py file.

The tasks names, order, and parameter values in the casa_pipescript.py script reflect the
processing recipe used for each individual delivery. Additionally, the pipelinemode parameter
is set to “automatic” for each task. In this mode, the task takes the default settings for each tasks
and only a limited number of parameters are exposed for editing by a user. Setting the pipeline

	

	

7	

mode to “interactive” will usually enable the values of a larger number of parameters to be
changed. See the ALMA Science Pipeline Reference Manual for more details, and Sec. 5.4
below for some examples.

__rethrow_casa_exceptions = True
h_init()
try:
 hifa_importdata(dbservice=False,
vis=['uid___A002_X877e41_X452'], session=['session_1'])
 hifa_flagdata(pipelinemode="automatic")
 hifa_fluxcalflag(pipelinemode="automatic")
 hif_rawflagchans(pipelinemode="automatic")
 hif_refant(pipelinemode="automatic")
 hifa_tsyscal(pipelinemode="automatic")
 hifa_tsysflag(pipelinemode="automatic")
 hifa_antpos(pipelinemode="automatic")
 hifa_wvrgcalflag(pipelinemode="automatic")
 hif_lowgainflag(pipelinemode="automatic")
 hif_gainflag(pipelinemode="automatic")
 hif_setjy(pipelinemode="automatic")
 hifa_bandpass(pipelinemode="automatic")
 hifa_spwphaseup(pipelinemode="automatic")
 hifa_gfluxscale(pipelinemode="automatic")
 hifa_timegaincal(pipelinemode="automatic")
 hif_applycal(pipelinemode="automatic")
 hif_makeimlist(intent='PHASE,BANDPASS,CHECK')
 hif_makeimages(pipelinemode="automatic")
 hif_exportdata(pipelinemode="automatic")
Start of pipeline imaging commands
 hif_mstransform(pipelinemode="automatic")
 hifa_flagtargets(pipelinemode="automatic")
 hif_makeimlist(specmode='mfs')
 hif_findcont(pipelinemode="automatic")
 hif_uvcontfit(pipelinemode="automatic")
 hif_uvcontsub(pipelinemode="automatic")
 hif_makeimages(pipelinemode="automatic")
 hif_makeimlist(specmode='cont')
 hif_makeimages(pipelinemode="automatic")
 hif_makeimlist(width='')
 hif_makeimages(pipelinemode="automatic")
 hif_exportdata(pipelinemode="automatic")
finally:
 h_save()
	

Figure	1:	Example	of	a	Pipeline	casa_pipescript.py	script	for	a	dataset	that	was	run	through	the	Pipeline	for	both	
calibration	and	imaging	

	

	

8	

There are two ways to run re-run the pipeline from scratch, described in the following two sub-
sections. One involves calling casa_pipescript.py directly, and one invokes it indirectly using
scriptForPI.py.

5.2.1 Rerun	Pipeline	manually	using	casa_pipescript.py	directly	

Execute the following steps to modify and re-run the Pipeline calibration:

• Copy casa_pipescript.py from the script directory to the raw directory.

• Copy flux.csv and *flagtemplate.txt and antennapos.csv (if present) from the
calibration directory to the raw directory.

In the raw directory:

• Make sure the naming of the raw ALMA data is consistent with those provided in the
script (e.g. if the data ends in .asdm.sdm then move to names which do not have this
suffix).

• Modify the appropriate *flagtemplate.txt file to add any additional flags, and edit
casa_pipescript.py to comment out the pipeline steps you do not wish to repeat (e.g.
imaging, which is very computationally expensive).

• Start the version of CASA containing Pipeline using casapy --pipeline, then type
execfile(‘casa_pipescript.py’).

• Alternatively, you can sequentially execute individual commands from
casa_pipescript.py, stopping at any point to run other CASA commands (plotms, etc).

Running the script through the first hif_makeimages command will create:

• A calibrated MS for each ASDM in the same directory.

• Images of the bandpass, phase, and (if present) check source calibrators (1 per spectral
window, in *.image format. To view a *.image file e.g. use casaviewer image_file_name).

• A pipeline*/html directory containing:

o the Pipeline WebLog - the html pages of plots from the calibration process.
Access using e.g. firefox index.html.

o casa_commands.log –a list of the CASA tasks used by Pipeline tasks during
calibration.

Note that to re-run the Pipeline multiple times, it is recommended to start each time from
a clean directory containing only the raw data, flux.csv, antennapos.csv file (if present)
and *flagtemplate.txt files and the casa_pipescript.py script.

If the flux.csv and *flagtemplate.txt files are not present in the directory, Pipeline will create
new default versions of these files, which will not contain any edits made to them by ALMA staff
during the Quality Assurance Process. Also note that it is advisable to have 8-10 GB RAM and
50-75 GB disk space per ALMA raw data file (ASDM) available to perform the Pipeline
calibration (note that the requirements for running the pipeline imaging commands are much

	

	

9	

more demanding). Please contact ALMA via the Helpdesk if assistance is needed with data
reprocessing.

5.2.2 Reproduce	Pipeline	run	using	scriptForPI.py	
If the casa_piperestorescript.py is not found in the ‘scripts’ directory, then executing
scriptForPI.py will fall-back to running the pipeline commands by executing
casa_pipescript.py, instead of simply applying the calibration tables as described in Sec. 5.1. A
user can force this behavior by moving or renaming casa_piperestorescript.py and executing
scriptForPI.py from within the ‘scripts’ directory. A /calibrated directory will be created by
scriptForPI.py, and should not exist at the time the the script is initially run. The working area
for this run is ‘calibrated/working/’. As described above, the hif* command arguments in the
casa_pipescript.py file may be edited before using this method. Fine-grained control over (e.g.)
continuum subtraction and flagging will be more difficult.

5.3 Running Imaging tasks

5.3.1 For	manually	imaged	deliveries	

For manually imaged datasets, the imaging commands will be included in a separate
scriptForImaging.py file, containing all the CASA commands used to create the delivered
products. In order to use this imaging script after using casa_pipescript.py, the science
spectral windows must first be “split” out from the calibrated measurement sets and the
measurement sets output with a .split.cal suffix. To perform the split, in CASA e.g.:

split('uid__A002_X89252c_X852.ms',
 outputvis='uid__A002_X89252c_X852.ms.split.cal',spw='17,19,21,23')

The science spectral windows are specified in the Pipeline WebLog (Home > Observation
Summary > Measurement Set Name > Spectral Setup, in the ID column) or can be determined
using the CASA task listobs e.g. listobs(‘uid___A002_X89252c_X852.ms’) and results
will be in the CASA logger.

If a script named scriptForFluxCalibration.py is present in the script directory, this must also
be executed prior to running the imaging script.

5.3.2 For	pipeline	imaged	deliveries			

To re-run imaging using the pipeline imaging tasks, you simply run the appropriate
hif_makeimlist and hif_makeimages commands from the casa_pipescript.py file.
However, be aware that the pipeline imaging tasks are very computationally expensive and the
default outputs (all sources, all spectral windows, all channels at full spectral resolution) result in
very large files. For running the imaging pipeline, it is advisable to have a system with >64 GB
RAM, and the available disk space needs to be 10 – 100 times the expected size of the final
imaging products.

In practice, it is unlikely that the imaging pipeline commands would need to be rerun in their
entirety. It would be much quicker and demand much less computing resources to only image
the sources and or spectral windows (spw) or channels of interest, at an appropriate spectral

	

	

10	

resolution. This can be done by finding the corresponding tclean() command in the provided
casa_commands.log file, modifying it as desired, and running it in CASA. These commands
work on the measurement set created by the pipeline hif_mstransform() command, so that
part of the imaging script would need to be run first.

5.4 Modifying the Pipeline Run
As a rule, it does not make sense to rerun the casa_pipescript.py exactly as delivered, since
this will merely reproduce the calibrated measurement set (which is much more easily generated
using scriptForPI.py as described in Sec. 5.1 above) and/or already-delivered products.
Instead, it is likely that the user may want to redo the calibration after some modifications or
produced modified imaging products. This section describes a few of the more common
calibration and imaging changes. See the ALMA Science Pipeline Reference Manual for more
complete details on the pipeline tasks and their inputs.

5.4.1 Removing	ASDMs	from	the	processing	
Problematic datasets (ASDMs) can be removed from the processing by editing the vis= and
session= lists in hifa_importdata in casa_pipescript.py.

5.4.2 	Introducing	additional	flagging	during	calibration	
Additional manual flagging can be introduced to any Pipeline reduction by editing the
*flagtemplate.txt files. Examples of the syntax to use in editing these files are given at the top
of the files. The flags are applied when hifa_flagdata command is run (right after
hifa_importdata).

5.4.3 	Editing	calibrator	fluxes	used	by	the	Pipeline	
Pipeline currently reads quasar calibrator fluxes from the flux.csv file. If a regularly-monitored
quasar has been used as the flux calibrator, the flux of this provided from the ALMA Quality
Assurance process can be over-ridden by editing it in this file. Only values for the flux calibrator
can be over-ridden, since values for the bandpass and phase calibrators are derived during data
calibration.

5.4.4 	Manipulating	the	Pipeline	Context	

It is recommended to always run the Pipeline using python scripts. New Pipeline runs/scripts
need to be initialised using h_init in order to create an empty pipeline Context.

If it is wanted to halt a Pipeline run before the end of processing, the Context should be saved
at that point using h_save. In order to resume the run, use h_resume to load the saved
Context before resuming the run. See the ALMA Science Pipeline Reference Manual for
more information.

If it is wanted to mainly use the Pipeline to calibrate a dataset but to e.g. insert a different
bandpass table into the processing, the following procedure should be followed:

• Run the pipeline until the end of the bandpass table creation task hifa_bandpass.
• View the calibration tables that Pipeline will use with hif_show_calstate.
• Export the calibration tables Pipeline uses to a file on disk using hif_export_calstate.

	

	

11	

• Edit the file to replace the name of the Pipeline-created bandpass table with the one it is
wanted to use instead.

• Import the file back to the Context using hif_import_calstate and resume the
processing.

5.4.5 Modifying	the	Pipeline	Imaging	Commands	

The pipeline imaging commands can be modified to produce different products. Examples are
given in a “CASA Guide” at
https://casaguides.nrao.edu/index.php/ALMA_Imaging_Pipeline_Reprocessing. There you will
find examples of the following:

• Making aggregate continuum image with all channels of all spectral windows.
• Redoing continuum subtractions with user-derived continuum ranges.
• Making a cube of subset of sources, spectral windows, with a different robust weight and

channel binning factor.

6 ALMA Single Dish (Total Power) Data
6.1 Re-running Pipeline calibration tasks using scriptForPI.py
For ALMA single dish (also known as Total Power) data, there is currently no script to restore
raw data to calibrated measurement sets by directly applying the Observatory-determined
calibration tables. Instead, for ALMA SD data that have been calibrated and imaged by the
Single Dish Pipeline, when scriptForPI.py is used, it will call casa_pipescript.py to perform a
full re-calibration of the data. Please note that it may take a significant amount of processing
time to re-calibrate the SD data. To know approximately how long it will take, see the “Execution
Duration” which is shown on the top-page of the WebLog.

The scriptForPI.py calls casa_pipescript.py. A typical script shown in Figure	2.

__rethrow_casa_exceptions=True
h_init()
hsd_importdata(vis = ['uid___A002_X877e41_X452'])
hsd_flagdata(pipelinemode=’automatic’)
hifa_tsyscal(pipelinemode=’automatic’)
hifa_tsysflag(fnm_byfield=True)
hsd_skycal(pipelinemode=’automatic’)
hsd_k2jycal(pipelinemode=’automatic’)
hsd_applycal(pipelinemode=’automatic’)
hsd_baseline(pipelinemode=’automatic’)
hsd_blflag(pipelinemode=’automatic’)
hsd_baseline(pipelinemode=’automatic’)
hsd_blflag(pipelinemode=’automatic’)
hsd_imaging(pipelinemode=’automatic’)
hsd_exportdata(pipelinemode=’automatic’)
h_save()

Figure	2:	Example	of	the	Single	Dish	Pipeline	calibration	script	casa_pipescript.py.	

	

	

12	

6.2 Re-running Pipeline calibration tasks using casa_pipescript.py
For SD data, the easiest way to reproduce the Single Dish Pipeline calibration performed as part
of the ALMA Quality Assurance Process is to run scriptForPI.py which can be found in the
ALMA delivery package. Alternatively, the following steps can be performed manually to
reproduce the calibration, but it is essentially equivalent:

• Copy casa_pipescript.py from the script directory to the raw directory.
• Copy jyperk.csv and *flagtemplate.txt from calibration directory to the raw directory.

In the raw directory:

• Make sure the naming of the raw ALMA data is consistent with those provided in the
script.

• Start the version of CASA containing Pipeline using casapy --pipeline, then type
execfile(‘casa_pipescript.py’).

Running the script will create:

• A calibrated MS for each ASDM in the same directory.
• A pipeline-*/html directory containing

o The Pipeline WebLog.
o The casa_commands.log file

6.3 Manual Imaging after running casa_pipescript.py
After calibration with the script casa_pipescript.py, it is possible to re-image using the CASA
Single Dish task, sdimaging, with user-defined parameters. Single Dish Pipeline creates a
calibrated MS with a suffix (filename extension) of “*.ms_bl” for each ASDM that is specified in
the infiles keyword parameter in the sdimaging command. For other parameters in
sdimaging, refer to the script/*casa_commands.log file under the delivered package.

Note that the images included in the delivery package have native frequency resolution and a
cell size of one-ninth of the beam size, as recommended in the SD “CASA Guide”
(https://casaguides.nrao.edu/index.php/M100_Band3_SingleDish_4.3). If you want to change
them to your preferable frequency resolution and cell size, we recommend that you import the
delivered FITS data cubes to CASA and regrid it using the CASA task imregrid.

It is also possible to revise the baseline subtraction using your prefered mask range instead of
the pipeline-defined range. We recommend doing this on the images using the CASA tasks
imcontsub or tsdbaseline during your own manual calibration (refer to the CASA Guides).	

6.4 Modifying the Pipeline Run
It is possible to insert manually (in a text file that should be called *flagtemplate.txt) additional
flagging not identified by pipeline if necessary. These can be any valid CASA flagdata
command. In single dish data you will be flagging autocorrelation, so be sure to add “&&*”
(which means cross- and auto-correlation) or “&&&” (which means auto-correlation) in the
antenna keyword and with the name of the antenna to flag. You can find an example in Figure	3.

	

	

13	

	

	

Figure	3:	WebLog	view	of	hsd_flagdata	showing	an	example	of	flagtemplate.txt.	

7 The Pipeline WebLog
7.1 Overview
The WebLog is a set of html pages that give a summary of how the calibration of ALMA data
proceeded, of the imaging products, and provides diagnostic plots and Quality Assurance (QA)
scores. The WebLog will be in the qa directory of an ALMA delivery. To view the WebLog, untar
and unzip the file using e.g. tar zxvf *WebLog.tar.gz . This will provide a pipeline*/html
directory containing the WebLog, which can be viewed using a web browser e.g. firefox
index.html.

The WebLog provides both a quick overview of datasets and also gives methods for exploring
each pipeline stage in detail. Therefore most calibration pages of the WebLog will first give a
single “representative” view, with further links to a more detailed view of all the plots associated
with that calibration step. Some of these will have a “Plot command” link that provides the CASA
command to reproduce the plot (see Figure	 4). For some stages, the detailed plots can be filtered
by a combination of outlier, antenna and spectral window criteria. Where histograms are
displayed, in modern web browsers it is possible to draw boxes on multiple histograms to select
the plots associated with those data points. All pipeline stages are assigned QA score to give an
“at a glance” indication of any trouble points.

WebLog Quick Tips

Any text written in blue, including headings, is a link to further information

To go straight to viewing calibrated science target plots, go to By Task >
hif_applycal and scroll down to the bottom

Histograms can have selector boxes drawn on them using the mouse

Commands for re-creating some WebLog plots in CASA are now provided

	

	

14	

	

Figure	 4:	 Example	 of	WebLog	 plot	with	 a	 "Plot	 command"	 link	 (arrow)	 that	 provides	 the	 CASA	 command	 for	
reproducing	the	plot.

7.2 Navigation
To navigate the main pages of the WebLog, click on items given in the bar at the top of the
WebLog home page. Also use the Back button provided at the upper right on some of the
WebLog sub-pages. Avoid using “back/previous page” on your web browser (although this can
work on modern browsers). Throughout the WebLog, links are denoted by text written in blue
and it is usually possible to click on thumbnail plots to enlarge them.

7.3 Home Page
The first page in the WebLog gives an overview of the observations (proposal code, data codes,
PI, observation start and end time), a pipeline execution summary (pipeline & CASA versions,
link to the current pipeline documentation, pipeline run date and duration), and an Observation
Summary table. Clicking on the bar at the top of the home page (see Figure	 5) enables
navigation to By Topic or By Task.

	

	

15	

	

Figure	5:	WebLog	Home	Page.	The	Navigation	Bar	is	circled	in	red.	

The Observation Summary table lists all the measurement sets included in the pipeline
processing, grouped by observing “sessions”. Each measurement set is calibrated
independently by the pipeline. For data that have been run through the imaging stages of the
pipeline, two MS will be listed – the original one including all data and spectral windows, and a
target.ms containing only science target data. The table provides a quick overview of the ALMA
receiver band used, the number of antennas, the start/end date and time, the time spent on
source, the array minimum and maximum baseline length, the rms baseline length and the size
of that measurement set. To view the observational setup of each measurement set in more
detail, click on the name of it to go to its overview page.

7.3.1 Measurement	set	Overview	pages	

Clicking on the measurement set name in the Observational Summary table brings up the
Measurement set Overview page (Figure	 6). Each measurement set Overview page has a
number of tables: Observation Execution Time, Spatial Setup (includes mosaic pointings),
Antenna Setup, Spectral Setup and Sky Setup (includes elevation vs. time plot). For more
information on the tables titled in blue text, click on these links. There are additionally links to
Weather, PWV, Scans and Telescope Pointings (in the case of Single Dish observations)
information. Two thumbnail plots, which can be enlarged by clicking on them, show the
observation structure either as Field Source Intent vs Time or Field Source ID vs Time. To
view the CASA listobs output from the observation, click on Listobs Output.

	

	

16	

	

Figure	6:	Measurement	Set	Overview	Page.	Click	on	the	table	headings	in	blue	for	more	information	about	each.

7.4 By Topic Summary Page
The By Topic summary page provides an overview of all Warnings and Errors triggered, a
Quality Assessment overview in Tasks by Topic and Flagging Summaries for the processing.

7.5 By Task Summary Page
The By Task summary page (Figure	 7) gives a list of all the pipeline stages performed on the
dataset. It is not displayed per measurement set as the Pipeline performs each step on every
measurement set sequentially before proceeding to the next step; e.g. it will import and register
all measurement sets with the Pipeline before proceeding to perform the ALMA deterministic
flagging step on each measurement set. The name of each step on the By Task page is a link to
more information. On the right hand side of the page are colored bars and scores that indicate
how well the Pipeline processing of that stage went. Green bars should indicate a fairly problem-
free dataset, while blue or red bars indicate less than perfect QA scores. Encircled symbols to
the left of each task name (“?”, “!” or “x”), indicate that there are informative QA messages on
the subtask pages.

	

	

17	

	

Figure	7:	By	Task	summary	view.	The	page	has	been	truncated	so	both	the	top	and	bottom	can	be	seen.	Each	
pipeline	stage	is	listed,	along	with	its	QA	score	(colored	bars	to	the	right),	and	links	to	the	CASA	logs	and	scripts.

7.5.1 CASA	logs	and	scripts	
At the bottom of the By Task summary page are links to the CASA logs and supporting files and
scripts. These include the complete CASA log file produced during the pipeline run, the
casa_commands.log file, and the pipeline restoration scripts described in Sec. 5:
casa_pipescript.py and casa_piperestorescript.py.

The casa_commands.log file is written by the pipeline to provide a list of the equivalent CASA
task commands (as opposed to Pipeline tasks) used by the Pipeline to process a dataset. While
this log cannot be used to create a CASA reduction script that is identical to the Pipeline
processing, it provides executable CASA commands with the parameter settings used by the
pipeline. The log is commented to indicate which Pipeline stage the tasks were called from and
why. The imaging commands given in this file can be easily modified to produce new imaging
products with more finely tuned inputs (e.g. interactive masks and deeper cleaning thresholds).

	

	

18	

7.6 Task Pages
Each task has its own summary page that is accessed by clicking on the task name on the By
Task summary page or in the left navigation menu from other pages. The task pages provide
the outcome, or the representative outcome, of each Pipeline task executed. For a fast
assessment of the calibration results, go straight to the applycal page. At the top of the
page will be any Task Notification (see Figure	 8). These provide informative messages or
warnings generated from the QA scoring and should be reviewed carefully.

	

Figure	8:	hifa_tsysflag	 task	page,	showing	the	task	notifications	at	 the	 top,	and	diagnostic	plots	 (Tsys	 for	each	
spw	grouped	by	MS).	Further	down	on	the	page	are	flagging	summary	tables.	To	see	the	sub-page	for	this	task,	
click	on	the	measurement	set	name	in	blue	above	each	set	of	plots.	This	will	take	you	to	a	page	of	detailed	plots	
for		individual	MS/antenna/spectral	windows	(see	Figure	10	for	an	example).	

At the bottom of each task page are expandable sections for Pipeline QA, Input Parameters
and Task Execution Statistics, and links to the CASA log commands for the specific task. An
example is given in Figure	9.

	

	

19	

	

Figure	 9:	 Bottom	 of	 the	 hifa_timegaincal	 page,	 showing	 the	 expanded	 Pipeline	 QA	 section,	 as	 well	 as	 the	
expandable	sections	for	Input	Parameters,	Task	Execution	Statistics	and	link	to	the	CASA	logs	for	this	stage.

7.6.1 Task	sub-pages	and	plot	filtering		
Most sub-pages have further links in order to access a more detailed view of the outcome of
each task. These links are often labelled by the measurement set name. Some of these plots
can be filtered by entering one or more MS, antenna, or spectral window in the appropriate box.
Still others have histograms of various metrics than can be selected using the cursor in a drop-
and-drag sense to outline a range of histogram values and displays the plots for the
MS/antenna/spw combinations that are responsible for those histogram values. An example of
these subpages and plot filtering is given in Figure	 10 – Figure	 12 below, using the By Task >
hifa_tsysflag: Flag Tsys calibration pages.

	

	

20	

	

Figure	10:	Unfiltered	view	of	the	hifa_tsysflag	sub-page.	The	page	is	arrived	at	by	clicking	on	the	measurement	
set	 link	 from	 the	hifa_tsysflag	 task	page	 (Figure	8).	Only	 the	 first	 row	of	plots	are	 shown;	many	more	appear	
below	(one	for	each	MS,	antenna,	spw	combination).	This	page	has	histograms	of	three	metric	scores	based	on	
the	median	Tsys	that	can	also	be	used	to	filter	the	plots	that	are	displayed.	

	

Figure	11:	Same	as	Figure	10,	but	with	a	specific	MS,	Tsys	window,	and	antenna	filter	set.	The	corresponding	
plots	are	displayed	below,	and	their	metric	scores	are	shown	by	blue	shading	in	the	histogram	plots.	

	

	

21	

	

Figure	12:		Same	as	Figure	10,	but	filtering	to	the	plot	of	interest	by	using	the	mouse	to	draw	a	grey	box	on	the	
highest	histogram	values	in	the	RMS	deviation	from	Average	Median	Tsys	histogram	plot	(upper	right).	To	clear	
the	grey	box	filters	on	the	histograms,	click	on	any	white	space	in	the	histograms.	

7.7 WebLog Quality Assessment (QA) Scoring
Pipeline tasks have scores associated with them in order to quantify the quality of the dataset
and the calibration. The scores are between 0.0 and 1.0 and are colourized according to the
following table:

Score Colour Comment
0.90-1.00 Green Standard/Good
0.66-0.90 Blue Below standard
0.33-0.66 Yellow Warning
0.00-0.33 Red Error

7.7.1 Interferometric	Pipeline	QA	Scores

Pipeline Task Pipeline QA Scoring
Metric Score

hifa_importdata Checking that the
required calibrators are
present

1.0 all present

0.1 subtracted for missing bandpass or flux
calibrator
1.0 subtracted for missing phase calibrator or
Tsys calibration
0.5 subtracted for existing processing history

	

	

22	

hifa_flagdata Determining percentage
of incremental flagging

0 < score < 1 === 60% < fraction flagged < 5%"
(for 'online', 'shadow', 'qa0', 'before' and
'applycal') where "0 < score < 1 === HIGH% <
fraction flagged < LOW%" means
• Score is 0 if flag fraction is >= HIGH%
• Score is 1 if flag fraction is <= LOW%
Score is linearly interpolated between 0 and 1
for fractions between HIGH% and LOW%

hifa_fluxcalflag Determining percentage
of incremental flagging

Additional 0%-5% flagging: score=1.0; flagging
5%-50% => 1.0...0.5; >50%: score=0.0

hif_rawflagchans Determining percentage
of data flagged due to
deviant channels in
rawdata

0% flagged: score=1.0;
100% flagged: score=0.0

hif_refant Determining if a
reference antenna
centrally located and not
flagged a lot

Sum of two scores. Score1: 1- [(distance from
array center) / (distance of furthest antenna
from array center)]
Score2: 1- [(#good visibilities)/max(# good
visibilities)]

hifa_tsysflag Determining percentage
of incremental flagging

Additional 0%-5% flagging: score=1.0; flagging
5%-50% => 1.0...0.5; >50%: score=0.0

hifa_antpos Determining if antenna
positional corrections
were applied

1.0 if no corrections needed; 0.9 if one or more
antennas were corrected.

hifa_wvrgcalflag Checking phase RMS
improvement

0.0 if RMS(before)/RMS(after) < 1, 0.5 ... 1.0
for ratios between 1 and 2, and 1.0 for ratios >
2

hif_lowgainflag Determining percentage
of incremental flagging

Additional 0%-5% flagging: score=1.0; flagging
5%-50% => 1.0...0.5; >50%: score=0.0

hif_gainflag Determining percentage
of incremental flagging

Score 1: Additional 0%-5% flagging: score=1.0;
flagging 5%-50% => 1.0...0.5; >50%: score=0.0
Score 2: if a flagging view could be created
then 1.0, otherwise 0.0

hifa_bandpass Judging phase and
amplitude solution
flatness per antenna,
spectral window and
polarization (interim
measure, future scoring
will be based on data
with solutions applied)

two algorithms: Wiener entropy and derivative
deviation, and signal-to-noise ratio (scores:
Wiener entropy: error function with 1-sigma
deviation of 0.001 from 1.0; derivative
deviation: error function with 1-sigma deviation
of 0.03 for the outlier fraction; signal-to-noise
ratio: error function with 1-sigma deviation of
1.0 for the signal-to-noise ratio)

hifa_spwphaseup Determining fraction of
spectral windows without
phase solutions
transferred from other
windows

Score is the fraction of spectral windows for
which phase solutions are unmapped to
expected number of spectral windows

hifa_gfluxscale Determining SNR of
fitted flux values

Fitted flux values with SNR < 5.0 are assigned
a score of 0.0, SNR > 20.0 a score of 1.0, and

	

	

23	

a linearly scaled value in between
hifa_timegaincal Determining X-Y / X2-X1

phase solution
deviations

Standard deviation of X-Y phase difference
converted to path length: 1.0 if lower than
4.25e-6 m, 0.0 if higher than 7.955e-2 m, with
an exponential decrease in between. Standard
deviation of X2-X1 phase differences of
subsequent integrations converted to path
length: 1.0 if lower than 3.08-e-5 m, 0.0 if
higher than 2.24e-2 m, with an exponential
decrease in between. NB: The high limits are
currently dummies. Determining their realistic
values is still under development.

hifa_applycal Determining percentage
of incremental flagging

Additional 0%-5% flagging: score=1.0; flagging
5%-50% => 1.0...0.5, >50%: score=0.0

hif_makeimlist Determine if expected
targets/spw will be
imaged

1.0 when all objects with desired intent appear
in list for all science SPW

hif_makeimages
(non-
checksource
calibrators &
science targets)

Determine if noise is
close to theoretical

Ratio of sensitivity measured in non-pbcor
image in a 0.3 – 0.2 PB annulus compared to
0.25 times clean threshold;
Score=1 when ratio is 1 or lower
Score=0 when ratio is 5 or higher

hif_makeimages
(Checksources)

Determine if phase
transfer worked for
checksource, by
checking for
decorrelation and
positional shift

Geometric mean of following two scores:
Score1=1.0 – abs[(catalog position – fitted
position)/beam size]
Score2=1.0-abs[gfluxscale flux – fitted image
flux)/gfluxscale flux]

hif_exportdata Determining Pipeline
products have been
exported

1.0 when files successfully exported

hif_mstransform Determine if proper files
were created

1.0 when target.ms files successfully created;
otherwise 0.0

hifa_flagtargets Determine if any target
flags were applied

1.0 when no flagging commands applied

hif_findcont Determine if continuum
could be identified for all
spw

1.0 if continuum frequency ranges found for all
spw

hif_uvcontfit Determine if continuum
could be fit

1.0 if continuum fit table created

hif_uvcontsub Determine if continuum
could be subtracted

Always set = 1.0

	

	

24	

7.7.2 Single-Dish	Pipeline	QA	scores	
Pipeline Task Pipeline QA Scoring

Metric
Score

hsd_importdata Checking that the required
calibrators are present

1.0 ATMOSPHERE intents are present

0.5 subtracted for existing processing history

0.5 subtracted for existing model data

1.0 one continuous observing session
1.0 all source coordinate are present

hsd_flagdata Determining percentage of
incremental flagging

0 < score < 1 === 60% < fraction flagged <
5%" (for 'online', 'shadow', 'qa0', 'before' and
'applycal')
where "0 < score < 1 === HIGH% < fraction
flagged < LOW%" means
• Score is 0 if flag fraction >= HIGH%
• Score is 1 if flag fraction <= LOW%

Score is linearly interpolated between 0 and 1
for fractions between HIGH% and LOW%

hsd_k2jycal Checking that all Kelvin-to-
Jy conversion factors are
provided

0.0 Missing Kelvin-to-Jy conversion factor for
some data

hsd_applycal Determining percentage of
incremental flagging

Additional 0%-5% flagging: score=1.0; flagging
5%-50% => 1.0...0.5, >50%: score=0.0

hsd_baseline Checking that one or more
than one emission line is
detected by line-finder.

1.0 there is more than one emission line
detected in at least one spw.

0.0 No line is detected in all spw.

hsd_blflag Determining percentage of
incremental flagging per
source per spw.

Additional 0%-5% flagging: score=1.0; flagging
5%-50% => 1.0...0.5, >50%: score=0.0

hsd_exportdata Checking that the required
files are exported

1.0 pipeline processing request file is
exported
1.0 pipeline WebLog file is exported
1.0 pipeline script file is exported
1.0 pipeline restore script file is exported
1.0 pipeline commands log file is exported
1.0 No missing final flag version files
1.0 No missing final apply commands files
1.0 No missing caltables files

	

	

	

25	

8 The “By task” WebLog for Interferometric Data
This section describes navigation of the Task sub-pages for each Interferometric Pipeline task
starting from the “By Task” tab. For a fuller description of each task, refer to ALMA Science
Pipeline Reference Manual.

8.1 hifa_importdata
In this task, ASDMs are imported into measurement sets, Binary Data Flags are applied, and
some properties of those MSs are calculated. The WebLog page shows a summary of imported
MSs, and flux densities of calibrators. Flux densities are read from the Source table of the
ASDM, which is recorded by the online system at the time of observation by interpolating in
frequency the recent measurements in the calibrator catalog (see Appendix C of the ALMA C4
Technical Handbook). The flux densities for each calibrator in each science spw in each MS are
written to the file flux.csv in the calibration/ subdirectory of a data delivery package. The values
in this file can be edited before continuing with the pipeline execution if you first use the
importonly option of eppr.executeppr.

8.2 hifa_flagdata
In this task, the online (XML format) flags, which includes the QA0 flags for antenna pointing
calibration failures, are applied along with the rest of the deterministic flagging reasons
(unwanted intents, autocorrelations, shadowed antennas, and TDM edge channels). The
WebLog page shows the percentage of flagged data per MS. The “Before Task” column
contains only the effect of the Binary Data Flags (BDF) applied during hifa_importdata. The
additional flags are applied in the order of columns shown in the table. The percentage in each
column reflects the additional amount of data flagged when applying this flag reason. The QA
score for this stage is based on BDF+QA0+online+template+shadow flagging.

8.3 hifa_fluxcalflag
The WebLog shows any flagging or spwmap that was required. If the flux calibrator is a solar
system object, known lines in the object (e.g. CO in Titan’s atmosphere) are flagged by this
task. If >75% of a given spw is flagged on the flux calibrator for this reason, then a spwmap is
calculated to transfer the flux scale from another spw. The WebLog shows if any flagging or
spwmap was required.

8.4 hif_rawflagchans
This task was designed to detect severe baseline-based anomalies prior to performing antenna-
based calibration. These bad data are often due to hardware problems during the observation.
Outlier channels and outlier baselines are detected in the uncalibrated visibilities of the
bandpass calibrator.

The WebLog page links to the images of the values used for flagging. Any flagged data are
shown on the plots along with a summary of all flagging performed in this task. The following
two rules are used to evaluate the need for flagging:

1) "bad quadrant" matrix flagging rule:

	

	

26	

This starts with the "baseline" vs. "channel" flagging view. In this view, some data points may
already be flagged, e.g. due to an earlier pipeline stage.

First, outliers are identified as those data points in the flagging view whose value deviates
from the median value of all non-flagged data points by a threshold factor times the median
absolute deviation (MAD) of the values of all non-flagged data points, where the threshold is
'fbq_hilo_limit' (default: 8.0).

In formula: flagging mask = (data - median(all non-flagged data)) > (MAD(all non-flagged

data) * fbq_hilo_limit)

Next, the flagging view is considered as split up in 4 quadrants of channels (since some
problems manifest in only one or more quadrants), and each antenna is evaluated
separately as follows:
a) Select baselines belonging to antenna and select channels belonging to quadrant.
b) Determine number of newly found outlier datapoints within selection.
c) Determine number of originally unflagged datapoints within selection.
d) Determine fraction of "number of newly found outliers" over "number of originally

unflagged datapoints".
e) If the latter fraction exceeds the fraction threshold 'fbq_antenna_frac_limit' (default: 0.2),

then a flagging command is generated that will flag all channels within the evaluated
quadrant for the evaluated antenna.

f) Otherwise, no action is taken (i.e. the newly found outlier datapoints are not individually
flagged by this rule),

Next, the flagging view is still considered as split up in 4 quadrants of channels, and each
baseline is evaluated separately, as follows:
a) Select baseline and select channels belonging to quadrant.
b) Determine number of newly found outlier datapoints within selection.
c) Determine number of originally unflagged datapoints within selection.
d) Determine fraction of "number of newly found outliers" over "number of originally

unflagged datapoints".
e) If the latter fraction exceeds the fraction threshold 'fbq_baseline_frac_limit' (default: 1.0),

then a flagging command is generated that will flag all channels within the evaluated
quadrant for the evaluated baseline.

f) Otherwise, no action is taken (i.e. the newly found outlier datapoints are not individually
flagged by this rule).

2) "outlier" matrix flagging rule:

Data points in the flagging view are identified as outliers if their value deviates from the
median value of all non-flagged data points by a threshold factor times the median absolute
deviation of the values of all non-flagged data points, where the threshold is 'fhl_limit'
(default: 20.0).

In formula: flagging mask = (data - median(all non-flagged data)) > (MAD(all non-flagged

data) * fhl_limit)

Flagging commands are generated for each of the identified outlier data points.

	

	

27	

If the number of data points in the flagging view are smaller than the minimum sample
'fhl_minsample' (default: 5), then no flagging is attempted.

8.5 hif_refant
An ordered list of preferred reference antennas is calculated, with preference given to central
array location and low flagging fraction. The WebLog page shows that list, and the score for
each antenna can be found in the casa log for this stage.

8.6 hifa_tsyscal
System temperature (Tsys) as a function of frequency is calculated from the atmospheric
calibration scan data by the online system at the time of observation. These spectra are
imported to a table of the MS during hifa_importdata. In hifa_tsyscal, these spectra are
copied into a CASA calibration table by the gencal task, which flags channels with zero or
negative Tsys. The WebLog shows the mapping of Tsys spectral windows to science spectral
windows, and plots Tsys before flagging.

8.7 hifa_tsysflag
This task flags the Tsys cal table created by the hifa_tsyscal pipeline task. Erroneous Tsys
measurements of several different kinds are detected, including anomalously high Tsys over an
entire spectral window, spikes or “birdies” in Tsys, and discrepant “shape” or Tsys as a function
of frequency. Details are provided in the WebLog for each kind of flagging performed, and all of
the Tsys spectra are plotted again. In these plots, all of the anomalies should be gone.

Tsysflag provides six separate flagging metrics, where each metric creates its own flagging view
and has its own corresponding flagging rule(s). In the current standard pipeline, all six metrics
are active, and evaluated in the order set by the parameter "metric_order" (default: 'nmedian,
derivative, edgechans, fieldshape, birdies, toomany').

1) Metric 1: "nmedian"

A separate view is generated for each polarisation and each spw. Each view is a matrix with
axes "time" vs. "antenna". Each point in the matrix is the median value of the Tsys spectrum
for that antenna/time.

The views are evaluated against the "nmedian" matrix flagging rule, where data points are
identified as outliers if their value is larger than a threshold-factor * median of all non-flagged
data points, where the threshold is 'fnm_limit' (default: 2.0).

Flagging commands are generated for each of the identified outlier data points.

2) Metric 2: "derivative"

A separate view is generated for each polarisation and each spw. Each view is a matrix with
axes "time" vs. "antenna". Each point in the matrix is calculated as follows:

o calculate "valid_data" as the channel-to-channel difference in Tsys for that
antenna/timestamp (for unflagged channels)

o calculate median(abs(valid_data - median(valid_data))) * 100.0

	

	

28	

The views are evaluated against the "max abs" matrix flagging rule, where data points are
identified as outliers if their absolute value exceeds the threshold "fd_max_limit" (default: 5).

Flagging commands are generated for each of the identified outlier data points.

3) Metric 3: "edgechans"

A separate view is generated for each spw and each of these intents: ATMOSPHERE,
BANDPASS, and AMPLITUDE. Each view contains a "median" Tsys spectrum where for
each channel the value is calculated as the median value of all selected (spw,intent) Tsys
spectra in that channel (this combines data from all antennas together).

The views are evaluated against the "edges" vector flagging rule, which flags all channels
from the outmost edges (first and last channel) until the first channel for which the channel-
to-channel difference first falls below a threshold times the median channel-to-channel
difference, where the threshold is "fe_edge_limit" (default: 3.0).

A single flagging command is generated for all channels newly identified as "edge channels".

4) Metric 4: "fieldshape"

A separate view is generated for each spw and each polarization. Each view is a matrix with
axes "time" vs. "antenna". Each point in the matrix is a measure of the difference of the Tsys
spectrum for that time/antenna from the median of all Tsys spectra for that antenna/spw in
the "reference" fields that belong to the reference intent specified by "ff_refintent" (default:
"BANDPASS").

The exact fieldshape value is calculated as: 100 * mean(abs(normalized tsys - reference
normalized tsys)), where a 'normalized' array is defined as: "array / median(array)"

The views are evaluated against the "max abs" matrix flagging rule, where data points are
identified as outliers if their absolute value exceeds the threshold "ff_max_limit" (default: 5).

5) Metric 5: "birdies"

A separate view is generated for each spw and each antenna. Each view contains a
"difference" Tsys spectrum calculated as:

"channel-by-channel median of Tsys spectra for antenna within spw" - "channel-by-

channel median of Tsys spectra for all antennas within spw".

The views are evaluated against the "sharps" vector flagging rule, which flags each view in
two passes:

a. flag all channels whose absolute difference in value to the following channel exceeds a
threshold "fb_sharps_limit" (default: 0.05).

b. around each newly flagged channel, flag neighboring channels until their channel-to-
channel difference falls below 2 times the median channel-to-channel difference (this is
intended to flag the wings of sharp features).

A single flagging command is generated for all channels newly identified as "birdies".

	

	

29	

6) Metric 6: "toomany"

A separate view is generated for each polarisation and each spw. Each view is a matrix with
axes "time" vs. "antenna". Each point in the matrix is the median value of the Tsys spectrum
for that antenna/time. (This is the same as for "nmedian" metric).

The views are evaluated against two separate flagging rules:

a. "tmf" (too many flags): This evaluates each timestamp one-by-one, flagging an entire
timestamp when the fraction of flagged antennas within this timestamp exceeds the
threshold "tmf1_limit" (default: 0.666). Flagging commands are generated per timestamp.

b. "tmef" (too many entirely flagged): This evaluates all timestamps at once, flagging all
antennas for all timestamps within current view (spw, pol) when the fraction of antennas
that are entirely flagged in all timestamps exceeds the threshold "tmef1_limit" (default:
0.666). Flagging commands are generated for each data point in the view that is newly
flagged.

8.8 hifa_antpos
Sometimes the antenna positions were refined after the science data were recorded. If such
refinements have been located, they are applied in this task. The corrections are listed in the
WebLog, and the uvw values for the visibility data are recalculated.

8.9 hifa_wvrgcalflag
Water Vapor Radiometer (WVR) power measurements are converted into a phase correction
table that can be applied to the science data. The phase rms during observation of the
bandpass calibrator, with and without the WVR correction, is used 1) to detect poorly performing
WVR units on individual antennas, and 2) to determine of the WVR correction helps overall.

The WebLog shows the effects of the phase correction in several ways, if any antennas’ WVR
data are flagged (the required phase correction is then interpolated from nearby antennas), and
also prints a warning of the correction is deemed not helpful enough to apply at all.

8.10 hif_lowgainflag
Antennas with persistently low amplitude gains are detected and flagged. The WebLog links to
grayscale images of the relative gain of each antenna calculated using the observation of the
bandpass calibrator, and shows if any antennas are flagged.

This task first creates a bandpass caltable, then a gain phase caltable, and finally a gain
amplitude caltable. This final gain amplitude caltable is used to identify antennas with outlier
gains, for each spw. Flagging commands for outlier antennas (per spw) are applied to the entire
MS.

A separate view is created for spw. Each view is a matrix with axes "time" vs. "antenna". Each
point in the matrix is the absolute gain amplitude for that antenna/timestamp.

The views are evaluated against the "nmedian" matrix flagging rule, where data points are
identified as outliers if:

	

	

30	

a. Their value is smaller than a threshold-factor * median of all non-flagged data points,
where the threshold is 'fnm_lo_limit' (default: 0.7), or

b. Their value is larger than a threshold-factor * median of all non-flagged data points,
where the threshold is 'fnm_hi_limit' (default: 1.3).

Flagging commands are generated for each of the identified outlier data points.

8.11 hif_gainflag
Antennas whose gain as a function of time shows anomalously high scatter are detected and
flagged. The WebLog links to grayscale images of the gain rms per antenna, showing any that
are flagged.

This task first creates a phased-up bandpass caltable, then a gain phase caltable, and finally a
gain amplitude caltable. This final gain amplitude caltable is used to identify antennas with
outlier gains, for each spw. Flagging commands for outlier antennas (per spw) are applied to the
entire MS.

Gainflag offers two separate flagging metrics, where each metric creates its own flagging view
and has its own corresponding flagging rule(s). In the Cycle 4 pipeline release, only the
"rmsdeviant" metric is active. This works as follows:

a. A separate view is created for each spw. Each view is a matrix with axes "time" vs.
"antenna". Each point in the matrix is the "standard deviation of the gain amplitudes
for that antenna and all timestamps, divided by the median absolute deviation of the
gain amplitude for all antennas and all timestamps".

b. The views are evaluated against the "max abs" matrix flagging rule, where data
points are identified as outliers if their absolute value exceeds the threshold
"frmsdev_limit" (default: 3.5).

Flagging commands are generated for each of the identified outlier data points	

8.12 hif_setjy
The model flux density of the amplitude calibrator is set, either from an internal CASA model
(solar system objects), or the results of observatory calibrator monitoring (quasars) which
ultimately appear in the file flux.csv (see hifa_importdata). These flux densities are listed on
the WebLog page, along with plots of the amplitude calibrator as a function of uv distance
(which is useful to assess resolved solar system objects).

8.13 hifa_bandpass
In this task, the bandpass calibrator is self-calibrated (phase only is first calibrated on as short a
time interval as allowed by signal-to-noise, listed on the WebLog page). The antenna-based
bandpass phase and amplitude solution is then calculated using a S/N-dependent frequency
interval, also listed on the WebLog page. Finally, the WebLog page links to plots of all of the
bandpass solutions, with the atmospheric transmission curve overlaid.

	

	

31	

8.14 hifa_spwphaseup
The relative phase offsets between spectral windows are determined for each antenna using the
observation of the bandpass calibrator. (The offset is assumed to be constant in time during
each execution.) If narrow spectral windows are present, a mapping is determined so that the
calculated phase calibration as a function of time can be subsequently transferred (during
subsequent gaincal and applycal tasks) from wider, higher S/N spectral windows to the narrow
ones. If any such reference spwmaps are required, then they are listed on the WebLog page.

8.15 hifa_gfluxscale
In this task, the flux densities of the phase and bandpass calibrators are calculated and listed on
the WebLog page. In this way, the absolute flux scale is transferred from the amplitude
calibrator to the other calibrators and ultimately to the science target (via the phase calibrator). If
the absolute flux calibrator is resolved (solar system object), plots of its amplitude as a function
of uv distance are shown, and only data on short baselines are used to calculate the flux
densities of the secondary calibrators. Note that phase-only self-calibration is performed on all
calibrators prior to this flux calculation.

8.16 hifa_timegaincal
In this task, gain as a function of time is calculated from observations of the phase
calibrator. The WebLog page shows plots of this gain, both on a scan timescale (as will be
interpolated to the science target), and on an integration timescale (useful for assessing weather
and calibration quality).

8.17 hif_applycal
In this task, all previously calculated calibration tables are applied to the science data. Any
failed calibration solutions, and flagged Tsys scans, will result in flagging of actual science data
in this stage, so the WebLog shows a summary of that additional flagging, and high flagging will
result in a low QA score. The WebLog page also includes many useful plots of the calibrated
data as a function of time and frequency. Outliers in these plots can indicate any remaining bad
data.

8.18 hif_makeimlist: Set-up parameters for calibrator images
This stage determines image parameters (image size, cell size, etc) to be used in the
subsequent hif_makeimages stage, and reports them on the WebLog page (See Figure	
13). The “specmode” can be mfs for per-spw continuum multi-frequency synthesis images,
“cont” for mfs continuum images of several spectral windows, or “cube” for spectral cubes. The
first time the task is run is in preparation for making per-spw mfs images of the calibrators.

	

	

32	

	

Figure	 13:	 Example	 of	 the	 WebLog	 for	 the	 hif_makeimlist	 stage.	 This	 example	 is	 for	 setting	 up	 the	
parameters	for	calibrator	per-spw	mult-frequency	synthesis	(mfs)	continuum	images.

8.19 hif_makeimages: Make calibrator images
This stage actually creates the images requested by the most recent hif_makeimlist. The
first time it is run is to create per-spw mfs continuum images of the calibrators. See the Stage 27
description for more information and examples of the hif_makeimages stage. Low QA scores
for non-Check source calibrators may indicate the need for additional flagging.

8.20 hif_exportdata
Calibration tables, calibrator images (exported in fits format), and other products are moved from
the pipeline /working to the /products directory.

(Subsequent stages only present if the imaging pipeline was run)

8.21 hif_mstransform
For each execution, calibrated visibilities for the science target(s) are split to a new MS with
“target.ms” in the name, as listed on the front WebLog page.

8.22 hifa_flagtargets
Flagging of the science target data, if determined to be necessary by an observatory scientist, is
performed as listed in the *flagtargetstemplate.txt files linked to the WebLog page. The
WebLog also shows a summary table of any flagging performed.

8.23 hif_makeimlist: Set-up parameters for target per-spw continuum
imaging

Imaging parameters are determined and listed for creation of per-spw mfs continuum images of
each science target. This run of hif_makeimlist also controls the parameters used to create
the dirty cubes used by the hif_findcont stage, including any channel binning (listed in the
“nbins” column of the hif_makeimlist table).

	

	

33	

8.24 hif_findcont
In this task, dirty image cubes are created for each spectral window of each science target. The
cubes are made at the native channel resolution unless the nbins parameter was used in the
preceding hif_makeimlist stage. The signal as a function of frequency is determined and
plotted on the WebLog page as a spectrum (see examples in Figure	 14). This is not simply a
mean spectrum of the target, but rather a quantity that is more sensitive to spectral features. In
most cases, it is the mean spectrum above a S/N level that depends on the number of
channels. If no features are found, the spectrum is recomputed over the central area of the
cube in search of faint compact emission. An alternative algorithm (the per-channel peak /
MAD) is invoked in certain situations, including when significant atmospheric lines are present.
In either case, frequency ranges are calculated that are the least likely to contain any line
emission or absorption, and these are listed in the LSRK frame on the WebLog page, as well as
being indicated by the cyan colored horizontal line(s) on the spectra.

	

Figure	14:	Two	examples	of	hif_findcont	plots,	one	with	the	entire	window	identified	as	continuum	(left),	
and	another	with	two	identified	continuum	regions	(right;	identified	continuum	indicated	by	cyan	lines).

The continuum frequency ranges are also printed to a file called “cont.dat”. If this file already
exists before hif_findcont is executed, then it will first examine the contents. For any spw
that already has frequency ranges defined in this file, it will not perform the analysis described
above in favor of the a priori ranges. For spws not listed in a pre-existing file, it will analyze
them as normal and update the file. In either case, the file cont.dat is used by the subsequent
hif_uvcontfit and hif_makeimages stages.

8.25 hif_uvcontfit
The previously determined continuum frequency ranges as shown in the cont.dat file are used to
fit the continuum of each visibility. The fit is performed for each spw independently using a
fitorder=1, and a calibration table is used to store the resulting fits called “uvcont.tbl”. The
WebLog for this stage reports the continuum ranges from hif_findcont in LSRK (cont.dat)
but translated to the topocentric (TOPO) frame for each MS.

	

	

34	

8.26 hif_uvsub
The hif_uvcontfit calibration table is applied to the data. After this step, the original
continuum + line emission is contained in the DATA column of the MS, while the continuum
subtracted data are written to the CORRECTED column.

8.27 hif_makeimages: Make target per-spw continuum images
Cleaned continuum images are created for each spectral window, each science target, using the
continuum frequency ranges determined from hif_findcont (as written in the cont.dat file)
from the DATA column. The resulting non-primary beam corrected images are displayed on the
WebLog page. For each image, the properties are shown next to the associated image png (see
Figure	 15). In particular, the center frequency, beam, theoretical sensitivity, cleaning threshold (4
x theoretical sensitivity x DR correction), dynamic range of dirty image, observed rms noise
measured in the non-primary beam corrected image in an annulus between the 0.3 to 0.2
response point of the primary beam, image max /min of the primary beam corrected image,
fractional bandwidth, aggregate bandwidth, and image QA score are shown.

	

Figure	 15:	 Example	 of	 hif_makimages	 WebLog	 page	 for	 per-spw	 images.	 Clicking	 on	 the	 thumbnail	 will	
enlarge	the	image.	Clicking	on	the	“View	other	QA	images”	link	will	bring	up	the	detailed	image	page	(Figure	16).

	

	

35	

The “View Other QA Images’ links for each image show the primary beam corrected image,
residual, clean mask (red area), dirty image, primary beam, psf, and clean model (Figure	16).

	

Figure	 16:	 Details	 page	 that	 is	 displayed	 after	 clicking	 on	 the	 “View	 other	 QA	 images”	 link	 on	 the	
hif_makimages	WebLog	page.

8.28 hif_makeimlist: Set-up parameters for target aggregate
continuum images

Imaging parameters are calculated and listed for creation of an aggregate (all spectral windows
combined) continuum image (specmode=’cont’) of each science target.

8.29 hif_makeimages: Make target aggregate continuum images
A cleaned aggregate continuum image of each science target is formed from the
hif_findcont channels (as listed in the cont.dat file) is created. The aggregate continuum
image(s) are made with nterms=2 if the fractional bandwidth is ≥ 10% (only currently possible for
ALMA Bands 3 and 4 data). The resulting non-primary beam corrected images are displayed on
the WebLog page. The “View Other QA Images” links show the primary beam corrected image,
psf, clean model, dirty image, and residual image (Figure	16).

8.30 hif_makeimlist: Set-up image parameters for target cube imaging
Parameters are calculated and listed for creation of spectral cube images of each continuum-
subtracted spectral window of each science target.

	

	

36	

8.31 hif_makeimages: Make target cubes
Cleaned continuum-subtracted cubes are created for each science target and spectral window
at the native channel resolution (unless channel binning has been selected using nbins in the
preceding hif_makeimlist) from the CORRECTED column. Cubes are made in the radio
LSRK frequency frame. Only channels that have not been designated as continuum channels
are cleaned. The WebLog page displays non-primary beam corrected peak intensity images for
each cube (“moment 8”) along with properties of the cubes (see Figure	 17). The information is
similar to that shown in Stage 27 for continuum images, except that the noise is the median rms
over all channels (still measured in a 0.3 – 0.2 PB annulus), and instead of fractional and
aggregate bandwidth the “channel” information is given as the number of channels imaged times
the channel width. Recall that if no online nor nbins (pipeline option) channel averaging is done,
the velocity resolution will be twice the channel width.

	

Figure	17:	Example	of	hif_makimages	WebLog	page	for	image	cubes.	

In addition to the “View other QA images” for continuum images demonstrated for Stage 27, an
additional plot is included for continuum subtracted cubes: an integrated intensity (“moment 0”)
image using the hif_findcont continuum frequency ranges (labeled “Line-free Moment 0”;
see Figure 18), which should be noise-like if the continuum subtraction worked well.

	

Figure	18:	Example	of	a	line-free	moment	0	map	shown	on	the	details	page	of	image	cubes.

	

	

37	

8.32 hif_exportdata
Science target images are converted to fits format and copied to the /products subdirectory as
well as the cont.dat file from the hif_findcont stage.

9 The “By task” WebLog for Single-Dish Data
This section describes navigation of the Task sub-pages for each Single Dish Pipeline task
starting from the “By Task” tab. For a fuller description of each task, refer to the ALMA Science
Pipeline Reference Manual.

9.1 hsd_importdata
The WebLog for hsd_importdata task shows the summary of imported MSs, grouping of
spws to be reduced as a group1, and spw matching between Tsys and science spws. This task
also generates figures of Telescope Pointings, which are available in the MS Summary page
(i.e. from the Home page, click the MS name, and then click on “Telescope Pointing”). There are
two types of plots that can be found containing full information on all pointings and just on-
source pointings (Figure 19). In these plots, the red circle indicates the beam size of the
antennas and its location is the starting position of the raster scan. The Red (small) dot indicates
the last position of the raster. The green line represents the antenna slewing motion, and in the
right panel of Figure 19 the green line going to/from the red dot indicates that the antenna goes
to the last scan and returns to the OFF position.

Figure	19:	The	detailed	page	of	Telescope	Pointing	in	the	MS	summary	page.	

9.2 hsd_flagdata
The WebLog for the hsd_flagdata task shows the summary of flagged data percentage per
MS due to binary data and online flagging, manually inserted file (*flagtemplate.txt),
shadowing, unwanted intents, and edge channels. Note that the value in the “Before Task”
column corresponds to the percentage of flagged data by binary data flagging.

																																																													
1	When several EBs are processed at once, the Pipeline needs to group their respective spws, based on spw Name.	

	

	

38	

9.3 hifa_tsyscal
It shows the associations of Tsys and science spectral windows to be used for Tsys (amplitude-
scale) calibration, and also shows the original Tsys spectra per spectral window.

9.4 hifa_tsysflag
It shows the flagged Tsys spectra per spectral window after heuristic flagging is applied.

9.5 hsd_skycal
The WebLog shows the integrated OFF spectra per spw and per source. The y-axis is the direct
output from the correlator, which means the values are dominated by signals from both the
atmosphere and receivers (Figure 20). The different colors indicate different scans (times).

The time-averaged plots of the OFF spectra are also shown in this page for the purpose of
assessing the time variability of the spectra. The different colors here indicate different spws.
Note that the OFF spectrum is not averaged over the spectral windows yet, but it will be in the
future.

The coordinates of the OFF position can be confirmed in the Reference Coordinates table.

	

Figure	20:	An	example	of	OFF	spectrum	

9.6 hsd_k2jycal
This page shows the list of Kelvin to Jy conversion factors that Pipeline has read from a file
“jyperk.csv”, which shall contain the factors per spw, per antenna, and per polarization.

9.7 hsd_applycal
It shows a list of the calibrated MSs with the name of the applied Tsys, Sky and amplitude
calibration (Kelvin to Jy conversion) tables, and also shows the integrated spectra after
calibration.

	

	

39	

9.8 hsd_baseline
Spectral data before/after baseline subtraction
The hsd_baseline page of the WebLog show the grid of spectra before (top) and after
(bottom) baseline subtraction (Figure 21). The plots on the hsd_baseline summary page (just
after clicking the hsd_baseline link of the WebLog) show a representative spectral map for
each spw out of all maps in the detail pages (when you click the “Spectral Window” link below
the grid of spectra in the summary page). The detail page has similar plots but this time for each
EB, antenna, and polarization.

On the top panel of each grid of spectra, a spatially integrated spectrum per EB, antenna, spw
and polarization is shown. The cyan filled regions indicate the mask channels containing
emission line that are identified in the entire map. Below the top panel, there is a grid of spectra
aligned along R.A./Decl. coordinates. Each small panel shows *one* representative spectrum
per grid cell (which sometimes we call “sparse profile map”). The red (horizontal) line over-
plotted on the spectrum indicates the fitted function to be used for baseline subtraction for
spectral data before baseline subtraction, while the zero-level for spectral data after baseline
subtraction.

Figure	21	An	example	of	the	summary	page	of	hsd_baseline.	

	

	

40	

R.A. vs Dec. plots

There are four different plots per spw, i.e. “clustering_detection”, “clustering_validation”,
“clustering_smoothing”, and “clustering_final”. The number of plots in each figure is the same as
that of the candidate line components. The “cluster_detection” plot (Figure 22a) shows the grid
cells having emission line exceeding the threshold. In the plot, yellow grid cells show a region
where there is a single time-domain group with detected emission lines. Cyan squares indicate
grid cells where there are more than one time-domain groups with detected emission lines.

	

	

Figure	22		Examples	of	(a)	clustering_detection,	(b)	clustering_validation,	and	(c)clustering_smoothing.

After line detection, the algorithm calculates how many spectra containing emission lines are
included in the grid cell in order to judge whether the grid cell possibly contains true emission
lines. At this line detection validation step, the ratio of the number of spectra having detected
emission lines (defined as “Nmember”) per grid cell and the number of total spectra belonging to
the grid cell (“Nspectra”) is calculated. The “clustering_validation” plot (Figure 22b) shows this
ratio for each grid cell, i.e., the grid cell is marked as:

• “Validated” if Nmember/Nspectra > 0.5 (Blue squares in Figure 22b)
• “Marginally validated” if Nmember/Nspectra > 0.3 (Cyan squares)
• “Questionable” if Nmember/Nspectra > 0.2 (Yellow squares)

After the validation step, the grid containing the Nmember/Nspectra rate per grid cell is
smoothed by a Gaussian-like grid function. This is to eliminate the isolated grid cells having a
single emission line candidate while enhancing the grid cells with detected emission line in
neighboring grid cells.

Figure 22c shows an example of “clustering_smoothing”. Blue squares represent the grid cells
with points exceeding the defined threshold, i.e., the grid cells having promising detections of
emission lines that are also found in the neighboring grid cells. Cyan and yellow squares are the
grid cells with points slightly below the threshold (Border), or lower than the threshold
(Questionable).

(a)						 	 					 																							(b)		 	 																										(c)	

	

	

41	

	

Figure	23	(a)	An	example	of	how	the	mask	range	is	calculated.	In	the	blue	squares,	the	mask	channel	range	is	the	
range	obtained	at	the	nearest	edge	of	any	validated	area	by	interpolation	mask	channel	ranges	in	the	validate	
grid	cells	(white-filled	red	circle).	(b)	An	example	of	clustering_final.	

As a final step, the mask region for each grid cell is determined. In the validated area after the
validation and the smoothing steps (blue squares in Figure 22c or green squares in Figure 23),
mask channel ranges are calculated over the spatial domain by inter/extrapolating the mask
ranges of the integrated spectra in the validated cells, and over each single non-integrated
spectrum. The mask channel range is determined and used in baseline subtraction in the green
and blue squares of Figure 23a. An example of “clustering_final” is shown in Figure 23b.

Line Center vs. Line Width plot
This plot shows the extent of each identified emission line candidate on the parameter space of
the line width versus the line center. The small dots indicate spectra containing identified
emission line. The red ovals show each clustering region with a size of the cluster radius.

Number of Clusters vs. Score plot
This plot shows the number of clusters and corresponding scores based on the cluster size
determined from the “line width” v.s. “line center” plot using clustering analysis (K-means
algorithm). The scoring is empirically defined so that the score gets better (smaller) when the
cluster size is smaller, the number of clusters is smaller, and the number of outliers is fewer than
those of other clusters. The users will know which number of clusters is more plausible by
searching for the number of clusters with a lower score. This plot is basically for developers.

9.9 hsd_blflag
The WebLog shows the list of flagged data percentage using five criteria which are explained in
the ALMA Pipeline Reference Manual. When you click on “details”, you will get the detailed
figures to evaluate these criteria as a function of rows (one row corresponds to a spectrum for
one integration). The flagged and unflagged data are shown in red and blue, respectively.

(a)						 	 					 	 																												(b)	

	

	

42	

9.10 hsd_imaging	
Profile Map
Figure 24 shows the top of the summary page. Three types of profile maps are available in the
WebLog: 1) The simplified profile map of the combined image per spw at the top, 2) a simplified
profile map per antenna, and 3) a detailed profile map. To access the simplified profile map per
antenna, click the corresponding “Spectral Window”. Each spectrum of the simplified profile
maps (either 1. or 2.) corresponds to an averaged spectrum in an area of ⅛ of the image size
(imsize), so that the total number of spectra in the profile map is 8 times 8. If the number of
pixels (along x- or y-axis) is less than eight, it shows all spectrum per pixel. To see the detailed
profile maps, click the icon with a symbol of polarization in the polarization column (see Figure
24). Each bin of the profile map is equivalent to a pixel, but with an interval of three cells. Due to
the limitation of the allowed number of plots per page (max 5 x 5 plots per page), the rest of the
plots are displayed in other pages.

Figure	24	An	example	of	the	profile	map.	

Channel Map

The number of channel maps per spw corresponds to the number of emission lines that have
been identified by the clustering analysis. In each channel map (see Figure 25), the top-middle
plot shows the identified emission line and the determined line width (bracketed by two red
vertical lines), overplotted on the averaged flux spectrum (in Jy) as a function of frequency (in
GHz).

The top-left plot shows the zoom-up view of the identified emission line, but with velocity axis.
The vertical axis is the averaged flux in Jy and the horizontal axis is in units of km/s. The
(center) velocity of 0 km/s corresponds to the central frequency of the emission line, while the

	

	

43	

velocity range is equivalent to the masked region where the emission line was identified. The
line velocity width is gridded into 15 bins, which are shown as red vertical lines.
The top-right plot shows the total integrated intensity map (in Jy/beam km/s) over the all
channels in the spw. Finally the channel maps within the velocity range of the identified emission
line are shown in the panel at the bottom. Each channel plot corresponds to a bin in the top-left
plot.

Figure	25	An	example	of	channel	map.	

The Baseline RMS Map is created using the baseline RMS stored in the baseline tables. The
baseline RMS is calculated by hsd_baseline using emission free channels.

The Integrated Intensity Map for each spw is generated using immoments task with all the
available channel range.

	

