Pipeline Tasks Reference Manual

Release 2023.1.0

pipeline team

Oct 1, 2023

CONTENTS

1	Gene	aric 1
	1.1	h_init
	1.2	h_resume
	1.3	h_save 3
	1.4	h_tsyscal
	1.5	h_weblog
2	Inter	ferometry Generic 5
	2.1	hif_analyzealpha
	2.2	hif_antpos
	2.3	hif_applycal
	2.4	hif_bandpass
	2.5	hif_checkproductsize
	2.6	hif_correctedampflag
	2.7	hif_editimlist
	2.8	hif_findcont
	2.9	hif_gaincal
	2.10	hif_lowgainflag
	2.11	hif_makecutoutimages
	2.12	hif_makeimages
	2.12	hif_makeimlist
	2.13	hif_makermsimages
	2.15	hif_mstransform
	2.16	hif_rawflagchans
	2.10	hif_refant
	2.18	hif_selfcal
	2.10	hif_setjy
	2.20	hif_setmodels
	2.20	hif_transformimagedata
	2.21	hif_uvcontsub
	<i></i>	<u>-</u>
3		ferometry ALMA 49
	3.1	hifa_antpos
	3.2	hifa_bandpass
	3.3	hifa_bandpassflag
	3.4	hifa_bpsolint
	3.5	hifa_exportdata
	3.6	hifa_flagdata
	3.7	hifa_flagtargets
	3.8	hifa_fluxcalflag

	3.9	hifa_gaincalsnr
	3.10	hifa_gfluxscale
	3.11	hifa_gfluxscaleflag
	3.12	hifa_imageprecheck
	3.13	hifa_importdata
	3.14	hifa_lock_refant
	3.15	hifa_polcal
	3.16	hifa_polcalflag
	3.17	hifa_renorm
	3.18	hifa_restoredata
	3.19	hifa_session_refant
	3.20	hifa_spwphaseup
	3.21	hifa_targetflag
	3.22	hifa_timegaincal
	3.22	hifa_tsysflag
	3.23	hifa_unlock_refant
	3.24	
		hifa_wvrgcal
	3.26	hifa_wvrgcalflag
4	Inter	ferometry ALMA SRDP 11
-	4.1	hifas_imageprecheck
	7.1	
5	Inter	ferometry VLA 11
	5.1	hifv_analyzestokescubes
	5.2	hifv_applycals
	5.3	hifv_checkflag
	5.4	hifv_circfeedpolcal
	5.5	hifv_exportdata
	5.6	hifv_exportvlassdata
	5.7	hifv_finalcals
	5.8	hifv_fixpointing
	5.8 5.9	hifv_flagcal
	5.10	
		hifv_flagdata
	5.11	hifv_flagtargetsdata
	5.12	hifv_fluxboot
	5.13	hifv_hanning
	5.14	hifv_importdata
	5.15	hifv_pbcor
		hifv_plotsummary
	5.17	hifv_priorcals
	5.18	hifv_restoredata
	5.19	hifv_restorepims
	5.20	hifv_selfcal
	5.21	hifv_semiFinalBPdcals
	5.22	hifv_solint
	5.23	hifv_statwt
	5.24	hifv_syspower
	5.25	hifv_testBPdcals
	5.26	hifv_vlasetjy
	5.27	hifv_vlassmasking
6	Singl	e Dish 14
	6.1	hsd_applycal
	6.2	hsd_atmcor

6.3	hsd_baseline	48
6.4	hsd_blflag	53
6.5	hsd_exportdata	56
6.6	hsd_flagdata	57
6.7	hsd_imaging	59
6.8	hsd_importdata	60
6.9	hsd_k2jycal	63
6.10	hsd_restoredata	65
6.11	hsd_skycal	67
6.12	hsd_tsysflag	69
Nobe		.73
7.1	hsdn_exportdata	73
7.2	hsdn_importdata	74
7.3	hsdn_restoredata	76

7

Note: The dryrun and acceptresults parameters for each task are no longer supported and may be removed in a future release. As such, they are excluded from this manual.

CHAPTER

ONE

GENERIC

5 tasks available.

task name	description
h_init	Initialize the pipeline
h_resume	Restore a save pipeline state
h_save	Save the pipeline state to disk
h_tsyscal	Derive a Tsys calibration table
h_weblog	Open the pipeline weblog in a browser

1.1 h_init

1.1.1 Task description

The h_init task initializes the pipeline.

h_init must be called before any other pipeline task. The pipeline can be initialized in one of two ways: by creating a new pipeline state (h_init) or be loading a saved pipeline state (h_resume).

h_init creates an empty pipeline context but does not load visibility data into the context. hif_importdata or hsd_importdata can be used to load data.

The pipeline context is returned.

1.1.2 Parameter List

parameter name	description
loglevel	Log level for pipeline messages. Log messages below this threshold will not be displayed.
plotlevel	Toggle generation of detail plots in the web log. A level of 'all' generates all plots; 'summary' omits detail plots; 'default' generates all plots apart from for the hif_applycal task.
	continues on next page

Table 1 – continued from previous page		
parameter name	description	
weblog		
	Generate the web log	

1.1.3 Examples

1. Create the pipeline context

>>> h_init()

1.2 h_resume

1.2.1 Task description

h_resume restores a name pipeline state from disk, allowing a suspended pipeline reduction session to be resumed.

1.2.2 Parameter List

parameter name	description
filename	Name of the saved pipeline state. Setting filename to 'last' restores the most recently saved pipeline state whose name begins with 'context*'.

1.2.3 Examples

1. Resume the last saved session

 $>>> h_resume()$

2. Resume the named saved session

 $>>> h_{resume}(filename='context.s3.2012-02-13T10:49:11')$

1.3 h_save

1.3.1 Task description

h_save saves the current pipeline state to disk using a unique filename. If no name is supplied one is generated automatically from a combination of the root name, 'context', the current stage number, and a time stamp.

1.3.2 Parameter List

parameter name	description
filename	Name of the saved pipeline state. If filename is '' then a unique name will be generated computed several components: the root, 'context', the current stage number, and the time stamp.

1.3.3 Examples

1. Save the current state in the default file

>>> h save()

2. Save the current state to a file called 'savestate_1'

```
>> h_save(filename='savestate_1')
```

1.4 h_tsyscal

1.4.1 Task description

Derive the Tsys calibration for list of ALMA MeasurementSets.

Output:

results - The results object for the pipeline task is returned.

1.4.2 Parameter List

parameter name	description
vis	List of input visibility files. example: vis=['ngc5921.ms']
caltable	Name of output gain calibration tables. example: caltable='ngc5921.gcal'
	continues on next page

parameter name	description
chantol	
	The tolerance in channels for mapping atmospheric calibration windows
	(TDM) to science windows (FDM or TDM).
	example: chantol=5
	•

Table 4 – continued from previous page

1.4.3 Examples

1. Standard call

 $>>> h_tsyscal()$

1.5 h_weblog

1.5.1 Task description

h_weblog opens the weblog in a new browser tab or window.

1.5.2 Parameter List

parameter name	description
relpath	
	Relative path to the weblog index file. This file must be located
	in a child directory of the CASA working directory. If relpath
	is left unspecified, the most recent weblog will be located and
	displayed.

1.5.3 Examples

1. Open pipeline weblog in a browser:

```
>>> h_weblog()
```

CHAPTER

INTERFEROMETRY GENERIC

22 tasks available.

task name	description
hif_analyzealpha	Extract spectral index from intensity peak in VLA/VLASS images
hif_antpos	Derive an antenna position calibration table
hif_applycal	Apply the calibration(s) to the data
hif_bandpass	Compute bandpass calibration solutions
hif_checkproductsize	Check imaging product size
hif_correctedampflag	Flag corrected - model amplitudes based on calibrators.
hif_editimlist	Add to a list of images to be produced with hif_makeimages()
hif_findcont	Find continuum frequency ranges
hif_gaincal	Determine temporal gains from calibrator observations
hif_lowgainflag	Flag antennas with low or high gain
hif_makecutoutimages	Cutout central 1 sq. degree from VLASS QL, SE, and Coarse Cube images
hif_makeimages	Compute clean map
hif_makeimlist	Compute list of clean images to be produced
hif_makermsimages	Create RMS images for VLASS data.
hif_mstransform	Create new MeasurementSets for science target imaging
hif_rawflagchans	Flag deviant baseline/channels in raw data
hif_refant	Select the best reference antennas
hif_selfcal	Determine and apply self-calibration with the science target data
hif_setjy	Fill the model column with calibrated visibilities
hif_setmodels	Set calibrator source models
hif_transformimagedata	Extract fields for the desired VLASS image to a new MS and reset weights
	if desired
hif_uvcontsub	Fit and subtract continuum from the data

2.1 hif_analyzealpha

2.1.1 Task description

Extract spectral index from intensity peak in VLA/VLASS images

The results object for the pipeline task is returned.

2.1.2 Parameter List

parameter name	description
vis	List of visisbility data files. These may be ASDMs, tar files of ASDMs, MSs, or tar files of MSs, If ASDM files are specified, they will be converted to MS format. example: vis=['X227.ms', 'asdms.tar.gz']
image	Restored subimage
alphafile	Input spectral index map
alphaerrorfile	Input spectral index error map

2.1.3 Examples

1. Basic analyzealpha task

```
>>> hif_analyzealpha()
```

2.2 hif_antpos

2.2.1 Task description

Derive the antenna position calibration for list of MeasurementSets.

The hif_antpos task corrects the antenna positions recorded in the ASDMs using updated antenna position calibration information determined after the observation was taken.

Corrections can be input by hand, read from a file on disk, or in the future by querying an ALMA database service.

The antenna positions file is in 'csv' format containing 6 comma-delimited columns as shown below. The default name of this file is 'antennapos.csv'.

Contents of example 'antennapos.csv' file:

ms,antenna,xoffset,yoffset,zoffset,comment uid___A002_X30a93d_X43e.ms,DV11,0.000,0.010,0.000,"No comment" uid___A002_X30a93d_X43e.dup.ms,DV11,0.000,-0.010,0.000,"No comment"

The corrections are used to generate a calibration table which is recorded in the pipeline context and applied to the raw visibility data, on the fly to generate other calibration tables, or permanently to generate calibrated visibilities for imaging.

Output

results - The results object for the pipeline task is returned.

2.2.2 Parameter List

parameter name	description
vis	List of input visibility files. example: ['ngc5921.ms']
caltable	Name of output gain calibration tables. example: ['ngc5921.gcal']
hm_antpos	Heuristics method for retrieving the antenna position corrections. The options are 'online' (not yet implemented), 'manual', and 'file'.
antenna	The list of antennas for which the positions are to be corrected. Available when hm_antpos='manual'. example: antenna='DV05,DV07'
offsets	The list of antenna offsets for each antenna in 'antennas'. Each offset is a set of 3 floating point numbers separated by commas, specified in the ITRF frame. Available when hm_antpos='manual'. example: offsets=[0.01, 0.02, 0.03, 0.03, 0.02, 0.01]
antposfile	The file(s) containing the antenna offsets. Used if hm_antpos is 'file'. example: 'antennapos.csv'

2.2.3 Examples

1. Correct the position of antenna 5 for all the visibility files in a single pipeline run:

>>> hif_antpos(antenna='DV05', offsets=[0.01, 0.02, 0.03])

2. Correct the position of antennas for all the visibility files in a single pipeline run using antenna positions files on disk. These files are assumed to conform to a default naming scheme if ant posfile is unspecified by the user:

 $>>> hif_antpos(hm_antpos='file', antposfile='myantposfile.csv')$

2.3 hif_applycal

2.3.1 Task description

Apply precomputed calibrations to the data.

hif_applycal applies the precomputed calibration tables stored in the pipeline context to the set of visibility files using predetermined field and spectral window maps and default values for the interpolation schemes.

Users can interact with the pipeline calibration state using the tasks h_export_calstate and h_import_calstate.

Output:

results - The results object for the pipeline task is returned

2.3.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets in the pipeline context. example: ['X227.ms']
field	A string containing the list of field names or field ids to which the calibration will be applied. Defaults to all fields in the pipeline context. example: '3C279', '3C279, M82'
intent	A string containing the list of intents against which the selected fields will be matched. Defaults to all supported intents in the pipeline context. example: '* <i>TARGET</i> *'
spw	The list of spectral windows and channels to which the calibration will be applied. Defaults to all science windows in the pipeline context. example: '17', '11, 15'
antenna	The selection of antennas to which the calibration will be applied. Defaults to all antennas. Not currently supported.
parang	Apply parallactic angle correction
	continues on next page

parameter name	description
applymode	
	Calibration apply mode 'calflag': calibrate data and apply flags from solutions
	'calflagstrict': (default) same as above except flag spws for which calibration is
	unavailable in one or more tables (instead of allowing them to pass uncalibrated and unflagged)
	'trial': report on flags from solutions, dataset entirely unchanged
	'flagonly': apply flags from solutions only, data not calibrated
	'flagonlystrict': same as above except flag spws for which calibration is unavailable in one or more tables
	'calonly': calibrate data only, flags from solutions NOT applied
calwt	Calibrate the weights as well as the data
flagbackup	
падоаскир	Backup the flags before the apply
flagsum	
-	Compute before and after flagging summary statistics
flagdetailedsum	
	Compute detailed before and after flagging statistics summaries. Parameter available only when if flagsum is True.
parallel	
	Execute using CASA HPC functionality, if available. options: 'automatic', 'true', 'false', True, False default: None (equivalent to False)

Table 3 - continued from previous page

2.3.3 Examples

1. Apply the calibration to the target data

 $>>> {\rm hif_applycal}~({\rm intent}{='{\rm TARGET'}})$

2.4 hif_bandpass

2.4.1 Task description

Compute amplitude and phase as a function of frequency for each spectral window in each MeasurementSet.

Previous calibration can be applied on the fly.

hif_bandpass computes a bandpass solution for every specified science spectral window. By default a 'phaseup' precalibration is performed and applied on the fly to the data, before the bandpass is computed.

The hif_refant task may be used to precompute a prioritized list of reference antennas.

Output

results - The results object for the pipeline task is returned.

2.4.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hif_importdata task. '': use all MeasurementSets in the context Examples: 'ngc5921.ms', ['ngc5921a.ms', ngc5921b.ms', 'ngc5921c.ms']
caltable	The list of output calibration tables. Defaults to the standard pipeline naming convention. Example: caltable=['M82.gcal', 'M82B.gcal']
field	The list of field names or field ids for which bandpasses are computed. Defaults to all fields. Examples: field='3C279', field='3C279, M82'
intent	A string containing a comma delimited list of intents against which the selected fields are matched. Defaults to all data with bandpass intent. Example: intent='*PHASE*'
	continues on next page

parameter name	description
spw	The list of spectral windows and channels for which bandpasses are computed. Defaults to all science spectral windows. Example: spw='11,13,15,17'
antenna	Set of data selection antenna IDs
phaseup	Do a phaseup on the data before computing the bandpass solution.
phaseupsolint	The phase correction solution interval in CASA syntax. Used when phaseup is True.
	Example: phaseupsolint=300
phaseupbw	Bandwidth to be used for phaseup. Defaults to 500MHz. Used when phaseup is True.
	Examples: phaseupbw=" to use entire bandpass phaseupbw='500MHz' to use central 500MHz
solint	Time and channel solution intervals in CASA syntax. Examples: solint='inf,10ch', 'inf'
combine	Data axes to combine for solving. Axes are '', 'scan', 'spw', 'field' or any comma-separated combination.
	Example: combine='scan,field'
refant	Reference antenna names. Defaults to the value(s) stored in the pipeline context. If undefined in the pipeline context defaults to the CASA reference antenna naming scheme.
	Examples: refant='DV01', refant='DV06,DV07'
solnorm	Normalise the bandpass solution

Tahla	1 _	continued	from	nrovious	nano
Table	4 -	continueu	IIOIII	DIEVIOUS	Daue

parameter name	description
minblperant	Minimum number of baselines required per antenna for each solve. Antennas with fewer baselines are excluded from solutions.
minsnr	Reject solutions below this SNR

Table 4 – continued from previous page

2.4.3 Examples

1. Compute a channel bandpass for all visibility files in the pipeline context using the CASA reference antenna determination scheme:

>>> hif_bandpass()

2. Same as the above but precompute a prioritized reference antenna list:

 $>>> hif_refant()$ $>>> hif_bandpass()$

2.5 hif_checkproductsize

2.5.1 Task description

Check interferometry imaging product size and try to mitigate to maximum allowed values. The task implements a mitigation cascade computing the largest cube size and tries to reduce it below a given limit by adjusting the nbins, hm_imsize and hm_cell parameters. If this step succeeds, it also checks the overall imaging product size and if necessary reduces the number of fields to be imaged.

Alternatively, if maximsize is set, the image product pixel count is mitigated by trying to adjust hm_cell parameter. If the pixel count is still greater than maximsize at hm_cell of 4ppb, then this value is kept and the image field is truncated around the phase center by forcing $hm_imsize = maximsize$.

Note that mitigation for image pixel count and for the product size currently are mutually exclusive, with maximize taking precedence if set.

Output:

results - The results object for the pipeline task is returned.

2.5.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hif_importdata task. '': use all MeasurementSets in the context Examples: 'ngc5921.ms', ['ngc5921a.ms', ngc5921b.ms', 'ngc5921c.ms']
maxcubesize	Maximum allowed cube size in gigabytes (mitigation goal) -1: automatic from performance parameters
maxcubelimit	Maximum allowed cube limit in gigabytes (mitigation failure limit) -1: automatic from performance parameters
maxproductsize	Maximum allowed product size in gigabytes (mitigation goal and failure limit) -1: automatic from performance parameters
maximsize	Maximum allowed image count size (mitigation goal and hard maximum). Parameter maximsize must be even and divisible by 2,3,5,7 only. Note that maximsize is disabled by default and cannot be set at the same time as maxcubesize, maxcubelimit and maxproductsize! -1: disables mitigation for this parameter
calcsb	Force (re-)calculation of sensitivities and beams
parallel	Use MPI cluster where possible

2.5.3 Examples

1. Basic call to check the product sizes using internal defaults

```
>>> hif_checkproductsize()
2. Typical ALMA call
```

 $>>> hif_checkproductsize(maxcubesize=40.0, maxcubelimit=60.0, maxproductsize=350.0)$

2.6 hif_correctedampflag

2.6.1 Task description

Flag corrected - model amplitudes based on calibrators.

This task computes the flagging heuristics on a calibrator by calling hif_correctedampflag which looks for outlier visibility points by statistically examining the scalar difference of corrected amplitudes minus model amplitudes, and flags those outliers. The philosophy is that only outlier data points that have remained outliers after calibration will be flagged. The heuristic works equally well on resolved calibrators and point sources because it is not performing a vector difference, and thus is not sensitive to nulls in the flux density vs. uvdistance domain. Note that the phase of the data is not assessed.

Output

results – The results object for the pipeline task is returned.

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hif_importdata task. '': use all MeasurementSets in the context Examples: 'ngc5921.ms', ['ngc5921a.ms', ngc5921b.ms', 'ngc5921c.ms']
intent	A string containing a comma delimited list of intents against which the selected fields are matched. If undefined (default), it will select all data with the BANDPASS intent. Example: intent='* <i>PHASE</i> *'
field	The list of field names or field ids for which bandpasses are computed. If undefined (default), it will select all fields. Examples: field='3C279', '3C279, M82'
spw	The list of spectral windows and channels for which bandpasses are computed. If undefined (default), it will select all science spectral windows. Example: spw='11,13,15,17'
	continues on next page

2.6.2 Parameter List

parameter name	description
antnegsig	Lower sigma threshold for identifying outliers as a result of bad antennas within individual timestamps
antpossig	Upper sigma threshold for identifying outliers as a result of bad antennas within individual timestamps
tmantint	Threshold for maximum fraction of timestamps that are allowed to contain outliers
tmint	Initial threshold for maximum fraction of "outlier timestamps" over "total timestamps" that a baseline may be a part of
tmbl	Initial threshold for maximum fraction of "bad baselines" over "all timestamps" that an antenna may be a part of
antblnegsig	Lower sigma threshold for identifying outliers as a result of "bad baselines" and/or "bad antennas" within baselines (across all timestamps)
antblpossig	Upper sigma threshold for identifying outliers as a result of "bad baselines" and/or "bad antennas" within baselines (across all timestamps)
relaxed_factor	Relaxed value to set the threshold scaling factor to under certain conditions (see task description)
niter	Maximum number of times to iterate on evaluation of flagging heuristics. If an iteration results in no new flags, then subsequent iterations are skipped.

Table 6 – continued from previous page

2.6.3 Examples

Run default flagging on bandpass calibrator with recommended settings:

 $>>> hif_correctedampflag()$

2.7 hif_editimlist

2.7.1 Task description

Add to a list of images to be produced with hif_makeimages(), which uses hif_tclean() to invoke CASA tclean. Many of the hif_editimlist() inputs map directly to tclean parameters.

The results object for the pipeline task is returned.

2.7.2 Parameter List

parameter name	description
imagename	Prefix for output image names.
search_radius_arcsec	Size of the field finding beam search radius in arcsec.
cell	 Image X and Y cell size(s) with units or pixels per beam. Single value same for both. '<number>ppb' for pixels per beam.</number> Compute cell size based on the UV coverage of all the fields to be imaged and use a 5 pix per beam sampling. The pix per beam specification uses the above default cell size ('5ppb') and scales it accordingly. example: ['0.5arcsec', '0.5arcsec'] '3ppb'
cfcache	Convolution function cache directory name
conjbeams	Use conjugate frequency in tclean for wideband A-terms.
cyclefactor	Controls the depth of clean in minor cycles based on PSF.
cycleniter	Controls max number of minor cycle iterations in a single major cycle.
datatype	Data type(s) to image. The default '' selects the best available data type (e.g. selfcal over regcal) with an automatic fallback to the next available data type. With the datatype parameter of 'regcal' or 'selfcal', one can force the use of only given data type(s). Note that this parameter is only for non-VLASS data when the datacolumn is not explicitly set by user or imaging heuristics.

parameter name	description
datacolumn	Data column to image; this will take precedence over the datatype parameter.
deconvolver	Minor cycle algorithm (multiscale or mtmfs)
editmode	The edit mode of the task ('add' or 'replace'). Defaults to 'add'.
field	Set of data selection field names or ids.
imaging_mode	Identity of product type (e.g. VLASS quick look) desired. This will determine the heuristics used.
imsize	Image X and Y size(s) in pixels or PB level (single fields), '' for default. Single value same for both. ' <number>pb' for PB level.</number>
intent	Set of data selection intents
gridder	Name of the gridder to use with tclean
mask	Used to declare whether to use a predefined mask for tclean.
pbmask	Used to declare primary beam gain level for cleaning with primary beam mask (usemask='pb'), used only for VLASS-SE-CONT imaging mode.
nbin	Channel binning factor.
nchan	Number of channels, $-1 = all$
niter	The max total number of minor cycle iterations allowed for tclean
nterms	Number of Taylor coefficients in the spectral model
parameter_file	keyword=value text file as alternative method of input parameters

Table 7 – continued from previous page

parameter name	description
pblimit	PB gain level at which to cut off normalizations
phasecenter	The default phase center is set to the mean of the field directions of all fields that are to be image together. example: 0, 'J2000 19h30m00 -40d00m00'
reffreq	Reference frequency of the output image coordinate system
restfreq	List of rest frequencies or a rest frequency in a string for output image.
robust	Briggs robustness parameter for tclean
scales	The scales for multi-scale imaging.
specmode	Spectral gridding type (mfs, cont, cube, '' for default)
spw	Set of data selection spectral window/channels, " for all
start	First channel for frequency mode images. Starts at first input channel of the spw. example: '22.3GHz'
stokes	Stokes Planes to make
sensitivity	Theoretical sensitivity (override internal calculation)
threshold	Stopping threshold (number in units of Jy, or string)
nsigma	Multiplicative factor for rms-based threshold stopping
uvtaper	Used to set a uv-taper during clean.
uvrange	Set of data selection uv ranges, '' for all.

1able / - continued from blevious bade	Table	7 – continued	from previous	page
--	-------	---------------	---------------	------

	Table 7 – continued from previous page	
parameter name	description	
width	Channel width	

2.8 hif_findcont

2.8.1 Task description

Find continuum frequency ranges for a list of specified targets.

If the cont.dat file is not already present in the working directory, then dirty image cubes are created for each spectral window of each science target at the native channel resolution unless the nbins parameter was used in the preceding hif_makeimlist stage. Robust=1 Briggs weighting is used for optimal line sensitivity, even if a different robust had been chosen in hifa_imageprecheck to match the PI requested angular resolution. Using moment0 and moment8 images of each cube, SNR-based masks are created, and the mean spectrum of the joint mask is computed and evaluated with extensive heuristics to find the channel ranges that are likely to be free of line emission. Warnings are generated if the channel ranges contain a small fraction of the bandwidth, or sample only a limited extent of the spectrum.

If the cont.dat file already exists in the working directory before this task is executed, then it will first examine the contents. For any spw that already has frequency ranges defined in this file, it will not perform the analysis described above in favor of the a priori ranges. For spws not listed in a pre-existing file, it will analyze them as normal and update the file. In either case, the cont.dat file is used by the subsequent hif_uvcontsub and hif_makeimages stages.

results - The results object for the pipeline task is returned.

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hif_importdata task. '': use all MeasurementSets in the context Examples: 'ngc5921.ms', ['ngc5921a.ms', ngc5921b.ms', 'ngc5921c.ms']
target_list	Dictionary specifying targets to be imaged; blank will read list from context
hm_mosweight	Mosaic weighting Defaults to '' to enable the automatic heuristics calculation. Can be set to True or False manually.
hm_perchanweightdensity	Calculate the weight density for each channel independently Defaults to '' to enable the automatic heuristics calculation. Can be set to True or False manually.
	continues on next page

2.8.2 Parameter List

parameter name	description
hm_weighting	Weighting scheme (natu- ral,uniform,briggs,briggsabs[experimental],briggsbwtaper[experimental])
datacolumn	Data column to image. Only to be used for manual overriding when the automatic choice by data type is not appropriate.
parallel	Use MPI cluster where possible

Table 8 – continued from previous page

2.8.3 Examples

1. Perform continuum frequency range detection for all science targets and spws:

>>> hif findcont()

2.9 hif_gaincal

2.9.1 Task description

The complex gains are derived from the data column (raw data) divided by the model column (usually set with hif_setjy). The gains are obtained for a specified solution interval, spw combination and field combination.

Good candidate reference antennas can be determined using the hif_refant task.

Previous calibrations that have been stored in the pipeline context are applied on the fly. Users can interact with these calibrations via the h_export_calstate and h_import_calstate tasks.

Output

results – The results object for the pipeline task is returned.

2.9.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hif_importdata task. '': use all MeasurementSets in the context
	Examples: 'ngc5921.ms', ['ngc5921a.ms', ngc5921b.ms', 'ngc5921c.ms']

parameter name	description
caltable	The list of output calibration tables. Defaults to the standard pipeline naming convention. Example: caltable=['M82.gcal', 'M82B.gcal']
field	The list of field names or field ids for which gain solutions are to be computed. Defaults to all fields with the standard intent. Example: field='3C279', field='3C279, M82'
intent	A string containing a comma delimited list of intents against which the selected fields are matched. Defaults to <i>*PHASE*</i> . Examples: intent='', intent=' <i>*AMP*</i> , <i>*PHASE*</i> '
spw	The list of spectral windows and channels for which gain solutions are computed. Defaults to all science spectral windows. Examples: spw='21', spw='21, 23'
antenna	Set of data selection antenna ids
hm_gaintype	The type of gain calibration. The options are 'gtype' and 'gspline' for CASA gain types = 'G' and 'GSPLINE' respectively.
calmode	Type of solution. The options are 'ap' (amp and phase), 'p' (phase only) and 'a' (amp only). Examples: calmode='p', calmode='a', calmode='ap'
solint	Time solution intervals in CASA syntax. Works for hm_gaintype='gtype' only.
	Examples: solint='inf', solint='int', solint='100sec' continues on next page

Table	9 - continued	from r	previous page
Iable		II OIII I	pievious page

parameter name	description
combine	Data axes to combine for solving. Options are '', 'scan', 'spw', 'field' or any comma-separated combination. Works for hm_gaintype='gtype' only.
refant	Reference antenna name(s) in priority order. Defaults to most recent values set in the pipeline context. If no reference antenna is defined in the pipeline context use the CASA defaults. Examples: refant='DV01', refant='DV05,DV07'
	Examples. Iclain = DV01; Iclain = DV05; DV07
refantmode	Controls how the refant is applied. Currently available choices are 'flex', 'strict', and the default value of ''. Setting to '' allows the pipeline to select the appropriate mode based on the state of the reference antenna list.
	Examples: refantmode='strict', refantmode="
solnorm	Normalize average solution amplitudes to 1.0
minblperant	Minimum number of baselines required per antenna for each solve. Antennas with fewer baselines are excluded from solutions. Works for hm_gaintype='gtype' only.
minsnr	Solutions below this SNR are rejected. Works for hm_gaintype='channel' only.
smodel	Point source Stokes parameters for source model (experimental). Defaults to using standard MODEL_DATA column data.
	Example: smodel=[1,0,0,0] - (I=1, unpolarized)
splinetime	
	Spline timescale (sec). Used for hm_gaintype='gspline'. Typical splinetime should cover about 3 to 5 calibrator scans.
npointaver	Tune phase-unwrapping algorithm. Used for hm_gaintype='gspline'. Keep at default value.
	continues on next page

Table	9 – continued	from previous pa	ae
-------	---------------	------------------	----

parameter name	able 9 – continued from previous page description
phasewrap	Wrap the phase for changes larger than this amount (degrees). Used for hm_gaintype='gspline'. Keep at default value.

. .

2.9.3 Examples

Compute standard per scan gain solutions that will be used to calibrate the target:

 $>>> hif_gaincal()$

2.10 hif_lowgainflag

2.10.1 Task description

Deviant antennas are detected by outlier analysis of a view showing their amplitude gains, pre-applying a temporary bandpass and phase solution. This view is a list of 2D images with axes 'Scan' and 'Antenna'; there is one image for each spectral window and intent. A flagcmd to flag all data for an antenna will be generated by any gain that is outside the range [fnm_lo_limit * median, fnm_hi_limit * median].

Output:

results – The results object for the pipeline task is returned.

2.10.2 Parameter List

parameter name	description
vis	
	The list of input MeasurementSets. Defaults to the list of
	MeasurementSets specified in the h_init or hif_importdata task.
	": use all MeasurementSets in the context
	Examples: 'ngc5921.ms', ['ngc5921a.ms', ngc5921b.ms', 'ngc5921c.ms']
intent	A string containing the list of intents to be checked for
	antennas with deviant gains. The default is blank, which
	causes the task to select the 'BANDPASS' intent.

parameter name	description
spw	The list of spectral windows and channels to which the calibration will be applied. Defaults to all science windows in the pipeline context. Examples: spw='17', spw='11, 15'
refant	A string containing a prioritized list of reference antenna name(s) to be used to produce the gain table. Defaults to the value(s) stored in the pipeline context. If undefined in the pipeline context defaults to the CASA reference antenna naming scheme. Examples: refant='DV01', refant='DV06,DV07'
flag_nmedian	Whether to flag figures of merit greater than fnm_hi_limit * median or lower than fnm_lo_limit * median. (default: True)
fnm_lo_limit	Flag values lower than $fnm_lo_limit * median (default: 0.5)$
fnm_hi_limit	Flag values higher than fnm_hi_limit * median (default: 1.5)
niter	The maximum number of iterations to run of the sequence: solve for amplitude gains, assess statistics, flag spw/antenna combinations that are outliers (default: 2)
tmef1_limit	Threshold for "too many entirely flagged" - the critical fraction of antennas whose solutions are entirely flagged in the flagging view of a spw for this stage: if the fraction is equal or greater than this value, then flag the visibility data from all antennas in this spw (default: 0.666)

Table	10 - continued	from	previous page	
-------	----------------	------	---------------	--

2.10.3 Examples

1. Flag antennas with low or high gain using recommended thresholds:

```
>>> hif_lowgainflag()
```

2.11 hif_makecutoutimages

2.11.1 Task description

Cutout central 1 sq. degree from VLASS QL, SE, and Coarse Cube images

Output:

results - The results object for the pipeline task is returned.

2.11.2 Parameter List

parameter name	description
vis	
	List of visibility data files. These may be ASDMs, tar files of ASDMs,
	MSs,
	or tar files of MSs.
	If ASDM files are specified, they will be converted to
	MS format.
	example: vis=['X227.ms', 'asdms.tar.gz']
offsetblc	-x and -y offsets to the bottom lower corner (blc) in arcseconds
offsettrc	+x and +y offsets to the top right corner (trc) in arcseconds

2.11.3 Examples

1. Basic makecutoutimages task

>>> hif_makecutoutimages()

2.12 hif_makeimages

2.12.1 Task description

Compute clean results from a list of specified targets.

Output:

results – The results object for the pipeline task is returned.

2.12.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hif_importdata task. '': use all MeasurementSets in the context Examples: 'ngc5921.ms', ['ngc5921a.ms', ngc5921b.ms', 'ngc5921c.ms']
target_list	Dictionary specifying targets to be imaged; blank will read list from context
hm_masking	Clean masking mode. Options are 'centralregion', 'auto', 'manual' and 'none'
hm_sidelobethreshold	sidelobethreshold * the max sidelobe level
hm_noisethreshold	noisethreshold * rms in residual image
hm_lownoisethreshold	lownoisethreshold * rms in residual image
hm_negativethreshold	negativethreshold * rms in residual image
hm_minbeamfrac	Minimum beam fraction for pruning
hm_growiterations	Number of binary dilation iterations for growing the mask
hm_dogrowprune	Do pruning on the grow mask Defaults to '' to enable the automatic heuristics calculation. Can be set to True or False manually.
	continues on next page

parameter name	description
hm_minpercentchange	Mask size change threshold
hm_fastnoise	Faster noise calculation for automask or nsigma stopping Defaults to '' to enable the automatic heuristics calculation. Can be set to True or False manually.
hm_nsigma	Multiplicative factor for rms-based threshold stopping
hm_perchanweightdensity	Calculate the weight density for each channel independently Defaults to '' to enable the automatic heuristics calculation. Can be set to True or False manually.
hm_npixels	Number of pixels to determine uv-cell size for super-uniform weighting
hm_cyclefactor	Scaling on PSF sidelobe level to compute the minor-cycle stopping threshold
hm_minpsffraction	PSF fraction that marks the max depth of cleaning in the minor cycle
hm_maxpsffraction	PSF fraction that marks the minimum depth of cleaning in the minor cycle
hm_weighting	Weighting scheme (natu- ral,uniform,briggs,briggsabs[experimental],briggsbwtaper[experimental])
hm_cleaning	Pipeline cleaning mode
tlimit	Times the sensitivity limit for cleaning
drcorretion	Override the default heuristics-based DR correction (for ALMA data only)
masklimit	Times good mask pixels for cleaning
cleancontranges	Clean continuum frequency ranges in cubes

Table 12 – continued from previous page

parameter name	description
calcsb	Force (re-)calculation of sensitivities and beams
hm_mosweight	Mosaic weighting Defaults to '' to enable the automatic heuristics calculation. Can be set to True or False manually.
overwrite_on_export	Replace existing image products when h/hifa/hifv_exportdata is called. If False, images that would have the same FITS name on export, are amended to include a version number. For example, if oussid.J1248-4559_ph.spw21.mfs.I.pbcor.fits would already be exported by a previous call to hif_makeimags, then 'oussid.J1248-4559_ph.spw21.mfs.I.pbcor.v2.fits' would also be exported to the products/ directory. The first exported product retains the same name. Additional products start counting with 'v2', 'v3', etc.
parallel	Clean images using MPI cluster

Table 12 – continued from previous page

2.12.3 Examples

1. Compute clean results for all imaging targets defined in a previous hif_makeimlist or hif_editimlist call:

```
>>> hif makeimages()
```

2. Compute clean results overriding automatic masking choice:

>>> hif makeimages(hm masking='centralregion')

2.13 hif_makeimlist

2.13.1 Task description

Generate a list of images to be cleaned. By default, the list will include one image per science target per spw. Calibrator targets can be selected by setting appropriate values for intent.

By default, the output image cell size is set to the minimum cell size consistent with the UV coverage.

By default, the image size in pixels is set to values determined by the cell size and the primary beam size. If a calibrator is being imaged (intents 'PHASE', 'BANDPASS', 'FLUX' or 'AMPLITUDE') then the image dimensions are limited to 'calmaxpix' pixels.

By default, science target images are cubes and calibrator target images are mfs. Science target images may be mosaics or single fields.

Output

results – The results object for the pipeline task is returned.

2.13.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hif_importdata task. "": use all MeasurementSets in the context Examples: 'ngc5921.ms', ['ngc5921a.ms', ngc5921b.ms', 'ngc5921c.ms']
imagename	Prefix for output image names, "" for automatic.
intent	Select intents for which associated fields will be imaged. Possible choices are PHASE, BANDPASS, AMPLITUDE, CHECK and TARGET or combinations thereof. Examples: 'PHASE,BANDPASS', 'TARGET'
field	Select fields to image. Use field name(s) NOT id(s). Mosaics are assumed to have common source / field names. If intent is specified only fields with data matching the intent will be selected. The fields will be selected from MeasurementSets in "vis". "" Fields matching intent, one image per target source.
spw	Select spectral windows to image. "": Images will be computed for all science spectral windows.
contfile	Name of file with frequency ranges to use for continuum images.
linesfile	Name of file with line frequency ranges to exclude for continuum images.
uvrange	Select a set of uv ranges to image. "": All uv data is included Examples: '0~1000klambda', ['0~100klambda', 100~1000klambda]

parameter name	description
specmode	Frequency imaging mode, 'mfs', 'cont', 'cube', 'repBW'. '' defaults to 'cube' if intent parameter includes 'TARGET' otherwise 'mfs'. specmode='mfs' produce one image per source and spw specmode='cont' produce one image per source and aggregate over all specified spws specmode='cube' produce an LSRK frequency cube, channels are specified in frequency specmode='repBW' produce an LSRK frequency cube at representative channel width
outframe	velocity frame of output image (LSRK, '' for automatic) (not implemented)
hm_imsize	 Image X and Y size in pixels or PB level for single fields. The explicit sizes must be even and divisible by 2,3,5,7 only. The default values are derived as follows: Determine phase center and spread of field centers around it. Set the size of the image to cover the spread of field centers plus a border of width 0.75 * beam radius, to first null. Divide X and Y extents by cell size to arrive at the number of pixels required. The PB level setting for single fields leads to an imsize extending to the specified level plus 5% padding in all directions. Examples: '0.3pb', [120, 120]
hm_cell	Image X and Y cell sizes. "" computes the cell size based on the UV coverage of all the fields to be imaged and uses a 5 pix per beam sampling. The pix per beam specification (' <number>ppb') uses the above default cell size ('5ppb') and scales it accordingly. The cells can also be specified as explicit measures. Examples: '3ppb', ['0.5arcsec', '0.5arcsec']</number>
calmaxpix	Maximum image X or Y size in pixels if a calibrator is being imaged ('PHASE', 'BANDPASS', 'AMPLITUDE' or 'FLUX' intent).

Table	13 -	continued	from	previous pa	ae
iabio	10	001101000		proviouo pu	90

parameter name	description
phasecenter	Direction measure or field id of the image center. The default phase center is set to the mean of the field directions of all fields that are to be image together. Examples: 'J2000 19h30m00 -40d00m00', 0
nchan	Total number of channels in the output image(s) -1 selects enough channels to cover the data selected by spw consistent with start and width.
start	Start of image frequency axis as frequency or velocity. "" selects start frequency automatically.
width	Output channel width. Difference in frequency between 2 selected channels for frequency mode images. 'pilotimage' for 15 MHz / 8 channel heuristic
nbins	Channel binning factors for each spw. Format: 'spw1:nb1,spw2:nb2,' with optional wildcards: '*:nb' Examples: '9:2,11:4,13:2,15:8', '*:2'
robust	Briggs robustness parameter Values range from -2.0 (uniform) to 2.0 (natural)
uvtaper	uv-taper on outer baselines
clearlist	Clear any existing target list
per_eb	Make an image target per EB
per_session	Make an image target per session
calcsb	Force (re-)calculation of sensitivities and beams

Table 13 – continued from previous page

parameter name	description
datatype	Data type(s) to image. The default '' selects the best available data type (e.g. selfcal over regcal) with an automatic fallback to the next available data type. With the datatype parameter one can force the use of only given data type(s) without a fallback. The data type(s) are specified as comma separated string of keywords. Accepted values are the standard data types such as 'REGCAL_CONTLINE_ALL', 'REGCAL_CONTLINE_SCIENCE', 'SELFCAL_CONTLINE_SCIENCE', 'REGCAL_LINE_SCIENCE', 'SELFCAL_CONTLINE_SCIENCE'. The shortcuts 'regcal' and 'selfcal' are also accepted. They are expanded into the full data types using the specmode parameter and the available data types for the given MSes. In addition the strings 'best' and 'all' are accepted, where 'best' means the above mentioned automatic mode and 'all' means all available data types for a given specmode. The data type strings are case insensitive. Examples: 'selfcal', 'regcal, 'selfcal,regcal', 'REGCAL_LINE_SCIENCE, selfcal_line_science'
datacolumn	Data column to image. Only to be used for manual overriding when the automatic choice by data type is not appropriate.
parallel	Use MPI cluster where possible

Table 13 – continued from previous page

2.13.3 Examples

1. Make a list of science target images to be cleaned, one image per science spw.

>>> hif_makeimlist()

2. Make a list of PHASE and BANDPASS calibrator targets to be imaged, one image per science spw.

 $>>> hif_makeimlist(intent='PHASE, BANDPASS')$

3. Make a list of PHASE calibrator images observed in spw 1, images limited to 50 pixels on a side.

>>> hif_makeimlist(intent='PHASE',spw='1',calmaxpix=50)

2.14 hif_makermsimages

2.14.1 Task description

Create RMS images for VLASS data.

Output:

results - The results object for the pipeline task is returned.

2.14.2 Parameter List

parameter name	description
vis	List of visibility data files. These may be ASDMs, tar files of ASDMs, MSs, or tar files of MSs, If ASDM files are specified, they will be converted to MS format.
	example: vis=['X227.ms', 'asdms.tar.gz']

2.14.3 Examples

```
1. Basic makermsimages task
```

>>> hif_makermsimages()

2.15 hif_mstransform

2.15.1 Task description

Create new MeasurementSets for imaging from the corrected column of the input MeasurementSet via a single call to mstransform with all data selection parameters. By default, all science target data is copied to the new MS. The new MeasurementSet is not re-indexed to the selected data and the new MS will have the same source, field, and spw names and ids as it does in the parent MS.

Output

results – The results object for the pipeline task is returned.

2.15.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hif_importdata task. '': use all MeasurementSets in the context Examples: 'ngc5921.ms', ['ngc5921a.ms', ngc5921b.ms', 'ngc5921c.ms']
outputvis	The list of output transformed MeasurementSets to be used for imaging. The output list must be the same length as the input list. The default output name defaults to <msrootname>_targets.ms Examples: 'ngc5921.ms', ['ngc5921a.ms', ngc5921b.ms', 'ngc5921c.ms']</msrootname>
field	Select fields name(s) or id(s) to transform. Only fields with data matching the intent will be selected. Examples: '3C279', 'Centaurus*', '3C279,J1427-421'
intent	Select intents for which associated fields will be imaged. By default only TARGET data is selected. Examples: 'PHASE,BANDPASS'
spw	Select spectral window/channels to image. By default all science spws for which the specified intent is valid are selected .
chanbin	Width (bin) of input channels to average to form an output channel. If chanbin > 1 then chanaverage is automatically switched to True.
timebin	Bin width for time averaging. If timebin > 0s then timeaverage is automatically switched to True.

2.15.3 Examples

1. Create a science target MS from the corrected column in the input MS.

>>> hif_mstransform()

2. Make a phase and bandpass calibrator targets MS from the corrected column in the input MS.

```
>>> hif mstransform(intent='PHASE, BANDPASS')
```

2.16 hif_rawflagchans

2.16.1 Task description

hif_rawflagchans flags deviant baseline/channels in the raw data.

The flagging views used are derived from the raw data for the specified intent - default is BANDPASS.

Bad baseline/channels are flagged for all intents, not just the one that is the basis of the flagging views.

For each spectral window the flagging view is a 2d image with axes 'channel' and 'baseline'. The pixel for each channel, baseline is the time average of the underlying unflagged raw data.

The baseline axis is labeled by numbers of form id1.id2 where id1 and id2 are the IDs of the baseline antennas. Both id1 and id2 run over all antenna IDs in the observation. This means that each baseline is shown twice but has the benefit that 'bad' antennas are easily identified by eye.

Three flagging methods are available:

If parameter flag hilo is set True then outliers from the median of each flagging view will be flagged.

If parameter flag_bad_quadrant is set True then a simple 2 part test is used to check for bad antenna quadrants and/or bad baseline quadrants. Here a 'quadrant' is defined simply as one quarter of the channel axis. The first part of the test is to note as 'suspect' those points further from the view median than fbq_hilo_limit * MAD. The second part is to flag entire antenna/quadrants if their fraction of suspect points exceeds fbq_antenna_frac_limit. Failing that, entire baseline/quadrants may be flagged if their fraction of suspect points exceeds fbq_baseline_frac_limit. Suspect points are not flagged unless as part of a bad antenna or baseline quadrant.

Output

results - The results object for the pipeline task is returned.

2.16.2 Parameter List

parameter name	description
vis	List of input MeasurementSets. default: [] - Use the MeasurementSets currently known to the pipeline context.

parameter name	description
spw	The list of spectral windows and channels to which the calibration will be applied. Defaults to all science windows in the pipeline context. example: spw='17', spw='11, 15'
	example. $spw=17$, $spw=11$, 15
intent	A string containing the list of intents to be checked for antennas with deviant gains. The default is blank, which causes the task to select the 'BANDPASS' intent.
	example: intent='*BANDPASS*'
flag_hilo	True to flag channel/baseline data further from the view median than fhl_limit * MAD.
fhl_limit	If flag_hilo is True then flag channel/baseline data further from the view median than fhl_limit * MAD.
fhl_minsample	Do no flagging if the view median and MAD are derived from fewer than fhl_minsample view pixels.
flag_bad_quadrant	True to search for and flag bad antenna quadrants and baseline quadrants. Here a /'quadrant/' is one quarter of the channel axis.
fbq_hilo_limit	If flag_bad_quadrant is True then channel/baselines further from the view median than fbq_hilo_limit * MAD will be noted as 'suspect'. If there are enough of them to indicate that an antenna or baseline quadrant is bad then all channel/baselines in that quadrant will be flagged.
fbq_antenna_frac_limit	If flag_bad_quadrant is True and the fraction of suspect channel/baselines in a particular antenna/quadrant exceeds fbq_antenna_frac_limit then all data for that antenna/quadrant will be flagged.

Tabla	10	aantinuad	from	nrovious nogo
Table	10 -	continued	IIOIII	previous page

parameter name	description
fbq_baseline_frac_limit	If flag_bad_quadrant is True and the fraction of suspect channel/baselines in a particular baseline/quadrant exceeds fbq_baseline_frac_limit then all data for that baseline/quadrant will be flagged.

Table 16 - continued from previous page

2.16.3 Examples

1. Flag bad quadrants and wild outliers, default method:

```
>>> hif rawflagchans()
```

equivalent to:

```
>>> hif_rawflagchans(flag_hilo=True, fhl_limit=20, flag_bad_quadrant=True, fbq_hilo_limit=8, fbq_antenna_frac_limit=0.2, fbq_baseline_frac_limit=1.0)
```

2.17 hif_refant

2.17.1 Task description

The hif_refant task selects a list of reference antennas and stores them in the pipeline context in priority order.

The priority order is determined by a weighted combination of scores derived by the antenna selection heuristics. In manual mode the reference antennas can be set by hand.

Output:

results – The results object for the pipeline task is returned.

2.17.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets in the pipeline context. example: ['M31.ms']
field	The comma delimited list of field names or field ids for which flagging scores are computed if hm_refant='automatic' and flagging = True example: '' (Default to fields with the specified intents), '3C279', '3C279,M82'

parameter name	description
spw	A string containing the comma delimited list of spectral window ids for which flagging scores are computed if hm_refant='automatic' and flagging = True. example: '' (all spws observed with the specified intents), '11,13,15,17'
intent	A string containing a comma delimited list of intents against which the selected fields are matched. Defaults to all supported intents. example: 'BANDPASS', 'AMPLITUDE,BANDPASS,PHASE,POLARIZATION'
hm_refant	The heuristics method or mode for selection the reference antenna. The options are 'manual' and 'automatic. In manual mode a user supplied reference antenna refant is supplied. In 'automatic' mode the antennas are selected automatically.
refant	The user supplied reference antenna for hm_refant='manual'. If no antenna list is supplied an empty list is returned. example: 'DV05'
geometry	Score antenna by proximity to the center of the array. This option is quick as only the ANTENNA table must be read. Parameter is available when ``hm_refant``='automatic'.
flagging	Score antennas by percentage of unflagged data. This option requires computing flagging statistics. Parameter is available when ``hm_refant``='automatic'.
parallel	Execute using CASA HPC functionality, if available. options: 'automatic', 'true', 'false', True, False default: None (equivalent to False)
refantignore	string list to be ignored as reference antennas. example: refantignore='ea02,ea03'

	Table	17 - continued from previous page	
--	-------	-----------------------------------	--

2.17.3 Examples

1. Compute the references antennas to be used for bandpass and gain calibration.

 $>>> hif_refant()$

2.18 hif_selfcal

2.18.1 Task description

Determine and apply self-calibration with the science target data

2.18.2 Parameter List

visThe list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hif_importdata task. default = "": use all MeasurementSets in the contextfieldSelect fields to image. Use field name(s) NOT id(s). Mosaics are assumed to have common source / field names. If intent is specified only fields with data matching the intent will be selected. The fields will be selected from MeasurementSets in "vis". default= "" Fields matching intent, one image per target source.spwSelect spectral windows to image. "": Images will be computed for all science spectral windows.contfileName of file to specify line-free frequency ranges for selfcal continuum imaging. default="cont.dat"applyApply final selfcal solutions back to the input MeasurementSets. default = TruerecalAlways re-do self-calibration even solutions/caltables are found in the Pipeline context or json restore file. default = False	parameter name	description
Select fields to image. Use field name(s) NOT id(s). Mosaics are assumed to have common source / field names. If intent is specified only fields with data matching the intent will be selected. The fields will be selected from MeasurementSets in "vis". default= "" Fields matching intent, one image per target source.spwSelect spectral windows to image. "": Images will be computed for all science spectral windows.contfileName of file to specify line-free frequency ranges for selfcal continuum imaging. default="cont.dat"applyApply final selfcal solutions back to the input MeasurementSets. default = ruerecalAlways re-do self-calibration even solutions/caltables are found in the pipeline context or json restore file.	vis	specified in the h_init or hif_importdata task.
Select spectral windows to image. "": Images will be computed for all science spectral windows.contfileName of file to specify line-free frequency ranges for selfcal continuum imaging. default="cont.dat"applyApply final selfcal solutions back to the input MeasurementSets. default = TruerecalAlways re-do self-calibration even solutions/caltables are found in the Pipeline context or json restore file.	field	to have common source / field names. If intent is specified only fields with data matching the intent will be selected. The fields will be selected from MeasurementSets in "vis".
Name of file to specify line-free frequency ranges for selfcal continuum imaging. default="cont.dat"applyApply final selfcal solutions back to the input MeasurementSets. default = TruerecalAlways re-do self-calibration even solutions/caltables are found in the Pipeline context or json restore file.	spw	
Apply final selfcal solutions back to the input MeasurementSets. default = True recal Always re-do self-calibration even solutions/caltables are found in the Pipeline context or json restore file.	contfile	
Always re-do self-calibration even solutions/caltables are found in the Pipeline context or json restore file.	apply	** *
uciault – Paise	recal	•

parameter name	description
refantignore	string list to be ignored as reference antennas. example: refantignore='ea02,ea03'
restore_resources	Path to the restore resources from a standard run of hif_selfcal. hif_selfcal will automatically do an exhaustive search to lookup/extract/verify the selfcal restore resources, i.e., selfcal.json and all selfcal-caltable referred in selfcal.json, starting from working/, to products/ and rawdata/. If restore_resources is specified, this file path will be evaluated first before the pre-defined exhaustive search list. The value can be the file path of *auxproducts.tgz file or *selfcal.json file.
n_solints	number of solution intervals to attempt for self-calibration. default: 4
amplitude_selfcal	Attempt amplitude self-calibration following phase-only self-calibration; if median time between scans of a given target is < 150s, solution intervals of 300s and inf will be attempted, otherwise just inf will be attempted. default = False
gaincal_minsnr	Minimum S/N for a solution to not be flagged by gaincal. default = 2.0
minsnr_to_proceed	Minimum estimated S/N on a per antenna basis to attempt self-calibration of a source. default = 3.0
delta_beam_thresh	Allowed fractional change in beam size for selfcalibration to accept results of a solution interval. default = 0.05
apply_cal_mode_default	Apply mode to use for applycal task during self-calibration; same options as applycal. default = 'calflag'
rel_thresh_scaling	Scaling type to determine how clean thresholds per solution interval should be determined going from the starting clean threshold to 3.0 * RMS for the final solution interval. default='log10', options: 'linear', 'log10', or 'loge' (natural log) continues on next page

Table	18 - continued	from previous page
-------	----------------	--------------------

parameter name	description
dividing_factor	Scaling factor to determine clean threshold for first self-calibration solution interval. Equivalent to (Peak S/N / dividing_factor) *RMS = First clean threshold; however, if (Peak S/N / dividing_factor) *RMS is < 5.0; a value of 5.0 is used for the first clean threshold. default = 40 for < 8 GHz; 15 for > 8 GHz
check_all_spws	If True, the S/N of mfs images created on a per-spectral-window basis will be compared at the initial stages final self-calibration. default=False
inf_EB_gaincal_combine	change gain solution combination parameters for the inf_EB solution interval. if True, the gaincal combine parameter will be set to 'scan,spw'; if False, the gaincal combine parameter will be set to 'scan'. default=False

Talala	10	f		
lable	18 – continued	i from	previous	page

2.18.3 Examples

1. Run self-calibration and apply solutions to all science targets and spws

>>> hif selfcal()

2. Run self-calibration and apply solutions to a single science target

>>> hif_selfcal(field="3C279")

3. Run self-calibration with a more relaxed allowed fractional change in the beam size for a solution interval to be successful

```
>>> hif_selfcal(delta_beam_thresh=0.15)
```

2.19 hif_setjy

2.19.1 Task description

Fills the model column with the model visibilities.

Output

results - The results object for the pipeline task is returned.

2.19.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets defined in the pipeline context.
field	The list of field names or field ids for which the models are to be set. Defaults to all fields with intent '* <i>AMPLITUDE</i> *'.
	example: field='3C279', field='3C279, M82'
intent	A string containing a comma delimited list of intents against which the selected fields are matched. Defaults to all data with amplitude intent.
	example: intent='*AMPLITUDE*'
spw	The list of spectral windows and channels for which bandpasses are computed. Defaults to all science spectral windows.
	example: spw='11,13,15,17'
model	Model image for setting model visibilities. Not fully supported.
	example: see details in help for CASA setjy task
reffile	Path to a file containing flux densities for calibrators unknown to CASA. Values given in this file take precedence over the CASA-derived values for all calibrators except solar system calibrators. By default the path is set to the CSV file created by h_importdata, consisting of catalogue fluxes extracted from the ASDM.
	example: reffile=", reffile='working/flux.csv'
normfluxes	Normalize lookup fluxes.
	continues on next page

parameter name	description
reffreq	The reference frequency for spix, given with units. Provided to avoid division by zero. If the flux density is being scaled by spectral index, then reffreq must be set to whatever reference frequency is correct for the given fluxdensity and spix. It cannot be determined from vis. On the other hand, if spix is 0, then any positive frequency can be used and will be ignored. example: reffreq='86.0GHz', reffreq='4.65e9Hz'
fluxdensity	Specified flux density [I,Q,U,V] in Jy. Uses [1,0,0,0] flux density for unrecognized sources, and standard flux densities for ones recognized by 'standard', including 3C286, 3C48, 3C147, and several planets, moons, and asteroids. example: [3.06,0.0,0.0,0.0]
spix	Spectral index for fluxdensity $S = $ fluxdensity * (freq/reffreq)**spix Only used if fluxdensity is being used. If fluxdensity is positive, and spix is nonzero, then reffreq must be set too. It is applied in the same way to all polarizations, and does not account for Faraday rotation or depolarization.
scalebychan	This determines whether the fluxdensity set in the model is calculated on a per channel basis. If False then only one fluxdensity value is calculated per spw.
standard	Flux density standard, used if fluxdensity[0] less than 0.0. The options are: 'Baars','Perley 90','Perley-Taylor 95', 'Perley-Taylor 99', 'Perley-Butler 2010' and 'Butler-JPL-Horizons 2010'. default: 'Butler-JPL-Horizons 2012' for solar system object 'Perley-Butler 2010' otherwise

Table	19 – continued from previous page

2.19.3 Examples

1. Set the model flux densities for all the amplitude calibrators:

>>> hif setjy()

2.20 hif_setmodels

2.20.1 Task description

Set model fluxes values for calibrator reference and transfer sources using lookup values. By default the reference sources are the flux calibrators and the transfer sources are the bandpass, phase, and check source calibrators. Reference sources which are also in the transfer source list are removed from the transfer source list.

Built-in lookup tables are used to compute models for solar system object calibrators. Point source models are used for other calibrators with flux densities provided in the reference file. Normalized fluxes are computed for transfer sources if the normfluxes parameter is set to True.

The default reference file is 'flux.csv' in the current working directory. This file is usually created in the importdata stage. The file is in 'csv' format and contains the following comma delimited columns.

vis,fieldid,spwid,I,Q,U,V,pix,comment

Output:

results - The results object for the pipeline task is returned

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the pipeline context. example: ['M32A.ms', 'M32B.ms']
reference	A string containing a comma delimited list of field names defining the reference calibrators. Defaults to field names with intent 'AMPLITUDE'. example: 'M82,3C273'
refintent	A string containing a comma delimited list of intents used to select the reference calibrators. Defaults to 'AMPLITUDE'. example: 'BANDPASS'
	continues on next page

2.20.2 Parameter List

parameter name	description
transfer	A string containing a comma delimited list of field names defining the transfer calibrators. Defaults to field names with intent ''. example: 'J1328+041,J1206+30'
transintent	A string containing a comma delimited list of intents defining the transfer calibrators. Defaults to 'BANDPASS,PHASE,CHECK'. '' stands for no transfer sources. example: 'PHASE'
reffile	The reference file containing a lookup table of point source models This file currently defaults to 'flux.csv' in the working directory. This file must conform to the standard pipeline 'flux.csv' format example: 'myfluxes.csv'
normfluxes	Normalize the transfer source flux densities.
scalebychan	Scale the flux density on a per channel basis or else on a per spw basis

Table 20 - continued from previous page

2.20.3 Examples

1. Set model fluxes for the flux, bandpass, phase, and check sources.

>>> hif setmodels()

2.21 hif_transformimagedata

2.21.1 Task description

Extract fields for the desired VLASS image to a new MS and reset weights if desired

Output:

results - The results object for the pipeline task is returned.

2.21.2 Parameter List

parameter name	description
vis	List of visibility data files. These may be ASDMs, tar files of ASDMs, MSs, or tar files of MSs, If ASDM files are specified, they will be converted to MS format. example: vis=['X227.ms', 'asdms.tar.gz']
outputvis	The output MeasurementSet.
field	Set of data selection field names or ids, '' for all.
intent	Set of data selection intents, '' for all.
spw	Set of data selection spectral window ids '' for all.
datacolumn	Select spectral windows to split. The standard CASA options are supported
	example: 'data', 'model'
chanbin	Bin width for channel averaging.
timebin	Bin width for time averaging.
replace	If a split was performed delete the parent MS and remove it from the context. example: True or False
clear_pointing	Clear the pointing table.
modify_weights	Re-initialize the weights.
wtmode	optional weight initialization mode when modify_weights=True

2.21.3 Examples

1. Basic transformimagedata task

>>> hif transformimagedata()

2.22 hif_uvcontsub

2.22.1 Task description

hif_uvcontsub fits the continuum for the frequency ranges given in the cont.dat file, subtracts that fit from the uv data and generates a new set of MSes containing the continuum subtracted (i.e. line) data. The fit is attempted for all science targets and spws. If a fit is impossible, the corresponding data selection is not written to the output line MS.

results - The results object for the pipeline task is returned

2.22.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hif_importdata task. '': use all MeasurementSets in the context Examples: 'ngc5921.ms', ['ngc5921a.ms', ngc5921b.ms', 'ngc5921c.ms']
field	The list of field names or field ids for which UV continuum fits are computed. Defaults to all fields. Examples: '3C279', '3C279,M82'
intent	A string containing a comma delimited list of intents against which the selected fields are matched. '': Defaults to all data with TARGET intent.
spw	The list of spectral windows and channels for which uv continuum fits are computed. '', Defaults to all science spectral windows. Example: '11,13,15,17'

parameter name	description
fitorder	
	Polynomial order for the continuum fits per source and spw. Defaults to {} which means fit order 1 for all sources and
	spws. If an explicit dictionary is given then all unspecified
	selections still default to 1.
	Example: {'3C279': {'15': 1, '17': 2}, 'M82': {'13': 2}}

Table 22 – continued from previous page

2.22.3 Examples

1. Fit and subtract continuum for all science targets and spws

>>> hif_uvcontsub()

2. Fit and subtract continuum only for a subsect of fields

 $>>> hif_uvcontsub(field='3C279,M82')$

3. Fit and subtract continuum only for a subsect of spws

 $>>> hif_uvcontsub(spw='11,13')$

4. Override automatic fit order choice

>>> hif_uvcontsub(fitorder={'3C279': {'15': 1, '17': 2}, 'M82': {'13': 2}})

CHAPTER

THREE

INTERFEROMETRY ALMA

26 tasks available.

task name	description
hifa_antpos	Derive an antenna position calibration table
hifa_bandpass	Compute bandpass calibration solutions
hifa_bandpassflag	Bandpass calibration flagging
hifa_bpsolint	Compute optimal bandpass calibration solution intervals
hifa_exportdata	Prepare interferometry data for export
hifa_flagdata	Do metadata based flagging of a list of MeasurementSets.
hifa_flagtargets	Do science target flagging
hifa_fluxcalflag	Locate and flag line regions in solar system flux calibrators
hifa_gaincalsnr	Compute gaincal signal-to-noise ratios per spw
hifa_gfluxscale	Derive flux density scales from standard calibrators
hifa_gfluxscaleflag	Flag the phase, pol, flux calibrators
hifa_imageprecheck	Calculates the best Briggs robust parameter to achieve sensitivity and angu-
	lar resolution goals.
hifa_importdata	Imports data into the interferometry pipeline
hifa_lock_refant	Lock reference antenna list
hifa_polcal	Derive instrumental polarization calibration for ALMA.
hifa_polcalflag	Flag polarization calibrators
hifa_renorm	ALMA renormalization task
hifa_restoredata	Restore flagged and calibration interferometry data from a pipeline run
hifa_session_refant	Select best reference antenna for session(s)
hifa_spwphaseup	Compute phase calibration spw map and per spw phase offsets
hifa_targetflag	Flag target source outliers
hifa_timegaincal	Determine temporal gains from calibrator observations
hifa_tsysflag	Flag deviant system temperatures for ALMA interferometry measurements.
hifa_unlock_refant	Unlock reference antenna list
hifa_wvrgcal	
	Generate a gain table based on Water Vapor Radiometer data, and calculate
	a QA score based on its effect on the interferometric data.
	a QA score based on its enect on the interferometric data.
hifa_wvrgcalflag	
	Generate a gain table based on Water Vapor Radiometer data, interpolating
	over
	antennas with bad radiometers.

3.1 hifa_antpos

3.1.1 Task description

The hifa_antpos task corrects the antenna positions recorded in the ASDMs using updated antenna position calibration information determined after the observation was taken.

Corrections can be input by hand, read from a file on disk, or in the future by querying an ALMA database service.

The antenna positions file is in 'csv' format containing 6 comma-delimited columns as shown below. This file should not include blank lines, including after the end of the last entry. The default name of this file is 'antennapos.csv'.

Example of contents for an 'antennapos.csv' file:

ms,antenna,xoffset,yoffset,zoffset,comment

uid____A002_X30a93d_X43e.ms,DV11,0.000,0.010,0.000,"No comment"

uid___A002_X30a93d_X43e.dup.ms,DV11,0.000,-0.010,0.000,"No comment"

The offset values in this file are in meters.

The corrections are used to generate a calibration table which is recorded in the pipeline context and applied to the raw visibility data, on the fly to generate other calibration tables, or permanently to generate calibrated visibilities for imaging.

Note: the hm_antpos 'online' option will be implemented when the observing system provides an antenna position determination service.

Output:

results – The results object for the pipeline task is returned.

3.1.2 Parameter List

parameter name	description
vis	
	List of input MeasurementSets. Defaults to the list of
	MeasurementSets specified in the pipeline context.
	Example: vis=['ngc5921.ms']
caltable	List of names for the output coliberation tables. Defaults
	List of names for the output calibration tables. Defaults
	to the standard pipeline naming convention.
	Example: caltable=['ngc5921.gcal']

parameter name	description
hm_antpos	Heuristics method for retrieving the antenna position corrections. The options are 'online' (not yet implemented), 'manual', and 'file'. Example: hm_antpos='manual'
antenna	The list of antennas for which the positions are to be corrected if hm_antpos is 'manual'. Example: antenna='DV05,DV07'
offsets	The list of antenna offsets for each antenna in 'antennas'. Each offset is a set of 3 floating point numbers separated by commas, specified in the ITRF frame. Example: offsets=[0.01, 0.02, 0.03, 0.03, 0.02, 0.01]
antposfile	The file(s) containing the antenna offsets. Used if hm_antpos is 'file'.
threshold	Highlight antenna position offsets greater than this value in the weblog. Units are wavelengths and the default is 1.0. Example: threshold=1.0

Table 1 - continued from previous page

3.1.3 Examples

1. Correct the position of antenna 'DV05' for all the visibility files in a single pipeline run:

>>> hifa_antpos(antenna='DV05', offsets=[0.01, 0.02, 0.03])

2. Correct the position of antennas for all the visibility files in a single pipeline run using antenna positions files on disk. These files are assumed to conform to a default naming scheme if ant posfile is unspecified by the user:

>>> hifa_antpos(hm_antpos='file', antposfile='myantposfile.csv')

3.2 hifa_bandpass

3.2.1 Task description

The hifa_bandpass task computes a bandpass solution for every specified science spectral window. By default, a 'phaseup' pre-calibration is performed and applied on the fly to the data, before the bandpass is computed.

The hif_refant task may be used to pre-compute a prioritized list of reference antennas.

Output:

results – The results object for the pipeline task is returned.

3.2.2 Parameter List

parameter name	description
vis	List of input MeasurementSets. Defaults to the list of MeasurementSets specified in the pipeline context. Example: vis=['ngc5921.ms']
caltable	List of names for the output calibration tables. Defaults to the standard pipeline naming convention. Example: caltable=['ngc5921.gcal']
field	The list of field names or field ids for which bandpasses are computed. Set to field=" by default, which means the task will select all fields. Example: field='3C279', field='3C279,M82'
intent	A string containing a comma delimited list of intents against which the selected fields are matched. Set to intent=" by default, which means the task will select all data with the BANDPASS intent. Example: intent='* <i>PHASE</i> *'
	continuos on port page

parameter name	description
spw	
SP.w	The list of spectral windows and channels for which bandpasses are computed. Set to spw=" by default, which means the task will select all science spectral windows.
	Example: spw='11,13,15,17'
antenna	Set of data selection antenna IDs
hm_phaseup	The pre-bandpass solution phaseup gain heuristics. The options are: 'snr': compute solution required to achieve the specified SNR 'manual': use manual solution parameters '': skip phaseup
	Example: hm_phaseup='manual'
phaseupsolint	The phase correction solution interval in CASA syntax. Used when $hm_phaseup =$ 'manual' or as a default if the $hm_phaseup =$ 'snr' heuristic computation fails.
	Example: phaseupsolint='300s'
phaseupbw	Bandwidth to be used for phaseup. Used when hm_phaseup = 'manual'.
	Example: phaseupbw=" to use entire bandpass phaseupbw='500MHz' to use central 500MHz
phaseupsnr	The required SNR for the phaseup solution. Used to calculate the phaseup time solint, and only if hm_phaseup = 'snr'.
	Example: phaseupsnr=10.0
phaseupnsols	The minimum number of phaseup gain solutions. Used only if hm_phaseup = 'snr'. Example: phaseupnsols=4
	continues on next page

Table	2 – continued	from previous	page
rabic			page

parameter name	description
hm_bandpass	The bandpass solution heuristics. The options are: 'snr': compute the solution required to achieve the specified SNR 'smoothed': simple 'smoothing' i.e. spectral solint>1chan 'fixed': use the user defined parameters for all spws Example: hm_bandpass='snr'
solint	Time and channel solution intervals in CASA syntax. Default is solint='inf', which is used when hm_bandpass = 'fixed'. If hm_bandpass = 'snr', then the task will attempt to compute and use an optimal SNR-based solint (and warn if this solint is not good enough). If hm_bandpass = 'smoothed', the task will override the spectral solint with bandwidth/maxchannels. Example: solint='int'
maxchannels	The bandpass solution 'smoothing' factor in channels, i.e. spectral solint will be set to bandwidth / maxchannels Set to 0 for no smoothing. Used if hm_bandpass = 'smoothed'. Example: maxchannels=240
evenbpints	Force the per spw frequency solint to be evenly divisible into the spw bandpass if hm_bandpass = 'snr'. Example: evenbpints=False
bpsnr	The required SNR for the bandpass solution. Used only if hm_bandpass = 'snr'. Example: bpsnr=30.0
minbpsnr	The minimum required SNR for the bandpass solution when strong atmospheric lines exist in Tsys spectra. Used only if hm_bandpass='snr'. Example: minbpsnr=10.0
bpnsols	The minimum number of bandpass solutions. Used only if hm_bandpass = 'snr'. Example: bpnsols=8 continues on next page

Table	2 -	continued	from	previous page
Iavie	~ -	CONTINUED	IIUIII	DIEVIOUS DAUE

parameter name	description
combine	Data axes to combine for solving. Axes are '', 'scan', 'spw', 'field' or any comma-separated combination. Example: combine='scan,field'
refant	List of reference antenna names. Defaults to the value(s) stored in the pipeline context. If undefined in the pipeline context defaults to the CASA reference antenna naming scheme. Example: refant='DV06,DV07'
solnorm	Normalise the bandpass solution; defaults to True. Example: solnorm=False
minblperant	Minimum number of baselines required per antenna for each solve. Antennas with fewer baselines are excluded from solutions. Example: minblperant=4
minsnr	Solutions below this SNR are rejected in the phaseup and bandpass solves. Example: minsnr=3.0
unregister_existing	Unregister all bandpass calibrations from the pipeline context before registering the new bandpass calibrations from this task. Defaults to False. Example: unregister_existing=True
fillgaps	Fill flagged solution channels by interpolation. Example: fillgaps=10

Table 2	2 – continued	from	previous	page
---------	---------------	------	----------	------

3.2.3 Examples

1. Compute a channel bandpass for all visibility files in the pipeline context using the CASA reference antenna determination scheme:

 $>>> hifa_bandpass()$

2. Same as the above but precompute a prioritized reference antenna list:

>>> hif_refant() >>> hifa bandpass()

3.3 hifa_bandpassflag

3.3.1 Task description

This task performs a preliminary phased-up bandpass solution and temporarily applies it, then computes the flagging heuristics by calling hif_corrected ampflag which looks for outlier visibility points by statistically examining the scalar difference of the corrected amplitudes minus model amplitudes, and then flags those outliers. The philosophy is that only outlier data points that have remained outliers after calibration will be flagged. Note that the phase of the data is not assessed.

Plots are generated at two points in this workflow: after bandpass calibration but before flagging heuristics are run, and after flagging heuristics have been run and applied. If no points were flagged, the 'after' plots are not generated or displayed.

Output:

results – The results object for the pipeline task is returned.

3.3.2 Parameter List

parameter name	description
vis	
	List of input MeasurementSets. Defaults to the list of
	MeasurementSets specified in the pipeline context.
	Example: vis=['ngc5921.ms']
caltable	List of names for the output calibration tables. Defaults
	to the standard pipeline naming convention.
	Example: caltable=['ngc5921.gcal']
	continuos on port pago

parameter name	description
intent	
incin	A string containing a comma delimited list of intents against which the selected fields are matched. Set to intent=" by default, which means the task will select all data with the BANDPASS intent. Example: intent='* <i>PHASE</i> *'
field	The list of field names or field ids for which bandpasses are computed. Set to field=" by default, which means the task will select all fields. Example: field='3C279', field='3C279,M82'
	Example. neid= 5C279, neid= 5C279, wi62
spw	The list of spectral windows and channels for which bandpasses are computed. Set to spw=" by default, which means the task will select all science spectral windows.
	Example: spw='11,13,15,17'
antenna	Set of data selection antenna IDs
hm_phaseup	The pre-bandpass solution phaseup gain heuristics. The options are: 'snr': compute solution required to achieve the specified SNR 'manual': use manual solution parameters '': skip phaseup
	Example: hm_phaseup='manual'
phaseupsolint	The phase correction solution interval in CASA syntax. Used when hm_phaseup = 'manual' or as a default if the hm_phaseup = 'snr' heuristic computation fails.
	Example: phaseupsolint='300s'
phaseupbw	Bandwidth to be used for phaseup. Used when hm_phaseup = 'manual'.
	Example: phaseupbw=" to use entire bandpass phaseupbw='500MHz' to use central 500MHz

Table 3 – continued from previous page

parameter name	description
phaseupsnr	The required SNR for the phaseup solution. Used only if hm_phaseup='snr'. Example: phaseupsnr=10.0
phaseupnsols	The minimum number of phaseup gain solutions. Used only if hm_phaseup='snr'. Example: phaseupnsols=4
hm_bandpass	The bandpass solution heuristics. The options are: 'snr': compute the solution required to achieve the specified SNR 'smoothed': simple 'smoothing' i.e. spectral solint>1chan 'fixed': use the user defined parameters for all spws
solint	Time and channel solution intervals in CASA syntax. Default is solint='inf', which is used when hm_bandpass = 'fixed'. If hm_bandpass = 'snr', then the task will attempt to compute and use an optimal SNR-based solint (and warn if this solint is not good enough). If hm_bandpass = 'smoothed', the task will override the spectral solint with bandwidth/maxchannels.
maxchannels	The bandpass solution 'smoothing' factor in channels, i.e. spectral solint will be set to bandwidth/maxchannels Set to 0 for no smoothing. Used if hm_bandpass = 'smoothed'. Example: maxchannels=240
evenbpints	Force the per spw frequency solint to be evenly divisible into the spw bandpass if hm_bandpass = 'snr'. Example: evenbpints=False
bpsnr	The required SNR for the bandpass solution. Used only if hm_bandpass = 'snr'. Example: bpsnr=30.0
	continues on next page

Table 3 – continued from previous page

parameter name	description
minbpsnr	The minimum required SNR for the bandpass solution when strong atmospheric lines exist in Tsys spectra. Used only if hm_bandpass = 'snr'. Example: minbpsnr=10.0
bpnsols	The minimum number of bandpass solutions. Used only if hm_bandpass = 'snr'. Example: bpnsols=8
combine	Data axes to combine for solving. Axes are '', 'scan', 'spw', 'field' or any comma-separated combination. Example: combine='scan,field'
refant	List of reference antenna names. Defaults to the value(s) stored in the pipeline context. If undefined in the pipeline context defaults to the CASA reference antenna naming scheme. Example: refant='DV06,DV07'
minblperant	Minimum number of baselines required per antenna for each solve. Antennas with fewer baselines are excluded from solutions. Example: minblperant=4
minsnr	Solutions below this SNR are rejected. Example: minsnr=3.0
solnorm	Normalise the bandpass solution; defaults to True.
antnegsig	Lower sigma threshold for identifying outliers as a result of bad antennas within individual timestamps. Example: antnegsig=4.0
antpossig	Upper sigma threshold for identifying outliers as a result of bad antennas within individual timestamps. Example: antpossig=4.6

Table 3 – continued from previous page

parameter name	description
tmantint	Threshold for maximum fraction of timestamps that are allowed to contain outliers. Example: tmantint=0.063
tmint	Initial threshold for maximum fraction of 'outlier timestamps' over 'total timestamps' that a baseline may be a part of. Example: tmint=0.085
tmbl	Initial threshold for maximum fraction of 'bad baselines' over 'all baselines' that an antenna may be a part of. Example: tmbl=0.175
antblnegsig	Lower sigma threshold for identifying outliers as a result of 'bad baselines' and/or 'bad antennas' within baselines (across all timestamps). Example: antblnegsig=3.4
antblpossig	Upper sigma threshold for identifying outliers as a result of 'bad baselines' and/or 'bad antennas' within baselines (across all timestamps). Example: antblpossig=3.2
relaxed_factor	Relaxed value to set the threshold scaling factor to under certain conditions (see documentation of the underlying correctedampflag task). Example: relaxed_factor=2.0
niter	Maximum number of times to iterate on evaluation of flagging heuristics. If an iteration results in no new flags, then subsequent iterations are skipped. Example: niter=2

Table 3 – continued fi	rom previous page
------------------------	-------------------

3.3.3 Examples

1. run with recommended settings to create bandpass solution with flagging using recommended thresholds:

>>> hifa bandpassflag()

3.4 hifa_bpsolint

3.4.1 Task description

The optimal bandpass phaseup time and frequency solution intervals required to achieve the required signal-to-noise ratio is estimated based on nominal ALMA array characteristics the metadata associated with the observation.

The phaseup gain time and bandpass frequency intervals are determined as follows:

- For each data set the list of source(s) to use for bandpass solution signal-to-noise estimation is compiled based on the values of the field, intent, and spw parameters.
- Source fluxes are determined for each spw and source combination.
- Fluxes in Jy are derived from the pipeline context.
- Pipeline context fluxes are derived from the online flux calibrator catalog, the ASDM, or the user via the flux.csv file.
- If no fluxes are available the task terminates.
- Atmospheric calibration and observations scans are determined for each spw and source combination.
- If intent is set to 'PHASE' are there are no atmospheric scans associated with the 'PHASE' calibrator, 'TARGET' atmospheric scans will be used instead.
- If atmospheric scans cannot be associated with any of the spw and source combinations the task terminates.
- Science spws are mapped to atmospheric spws for each science spw and source combination.
- If mappings cannot be determined for any of the spws the task terminates.
- The median Tsys value for each atmospheric spw and source combination is determined from the SYSCAL table. Medians are computed first by channel, then by antenna, in order to reduce sensitivity to deviant values.
- The science spw parameters, exposure time(s), and integration time(s) are determined.
- The phase-up time interval, in time units and number of integrations required to meet the phaseupsnr are computed, along with the sensitivity in mJy and the signal-to-noise per integration. Nominal Tsys and sensitivity values per receiver band provided by the ALMA project are used for this estimate.
- Warnings are issued if estimated phase-up gain time solution would contain fewer than minphaseupints solutions.
- The frequency interval, in MHz and number of channels required to meet the <u>bpsnr</u> are computed, along with the per channel sensitivity in mJy and the per channel signal-to-noise. Nominal Tsys and sensitivity values per receiver band provided by the ALMA project are used for this estimate.
- Warnings are issued if estimated bandpass solution would contain fewer than minbpnchan solutions.
- If strong atmospheric features are detected in the Tsys spectrum for a given spw, the frequency interval of bandpass solution is recalculated to meet the lower threshold, minbpsnr - i.e. a lower snr is tolerated in order to preserve enough frequency intervals to capture the atmospheric line.

Output:

results – The results object for the pipeline task is returned.

3.4.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the pipeline context. example: vis=['M82A.ms', 'M82B.ms']
field	The list of field names of sources to be used for signal-to-noise estimation. Defaults to all fields with the standard intent. example: field='3C279'
intent	A string containing a comma delimited list of intents against which the selected fields are matched. Defaults to 'BANDPASS'. example: intent='PHASE'
spw	The list of spectral windows and channels for which gain solutions are computed. Defaults to all the science spectral windows for which there are both 'intent' and TARGET intents. example: spw='13,15'
phaseupsnr	The required phase-up gain time interval solution signal-to-noise. example: phaseupsnr=10.0
minphaseupints	The minimum number of time intervals in the phase-up gain solution. example: minphaseupints=4
	continues on next page

parameter name	description
evenbpints	Use a bandpass frequency solint that is an integer divisor of the spw bandwidth, to prevent the occurrence of one narrower fractional frequency interval.
bpsnr	The required bandpass frequency interval solution signal-to-noise.
	example: bpsnr=30.0
minbpsnr	The minimum required bandpass frequency interval solution signal-to-noise when strong atmospheric lines exist in Tsys spectra.
	example: minbpsnr=10.0
minbpnchan	The minimum number of frequency intervals in the bandpass solution.
	example: minbpnchan=16
hm_nantennas	The heuristics for determines the number of antennas to use in the signal-to-noise estimate. The options are 'all' and 'unflagged'. The 'unflagged' options is not currently supported.
	example: hm_nantennas='unflagged'
maxfracflagged	The maximum fraction of an antenna that can be flagged before it is excluded from the signal-to-noise estimate.
	example: maxfracflagged=0.80

Table 4 – continued from previo	us page
---------------------------------	---------

3.4.3 Examples

1. Estimate the phaseup gain time interval and the bandpass frequency interval required to match the desired signal-to-noise for bandpass solutions:

>>> hifa_bpsolint()

3.5 hifa_exportdata

3.5.1 Task description

Prepare interferometry data for export.

The hifa_exportdata task for ALMA CASA pipeline exports the data defined in the pipeline context and exports it to the data products directory, converting and or packing it as necessary.

The current version of the task exports the following products

- an XML file containing the pipeline processing request
- a tar file per ASDM / MS containing the final flags version
- a text file per ASDM / MS containing the final calibration apply list
- a FITS image for each selected calibrator source image
- a FITS image for each selected science target source image
- a tar file per session containing the caltables for that session
- a tar file containing the file web log
- a text file containing the final list of CASA commands
- an XML "manifest" file listing the products
- an XML "aquareport" file listing the QA scores and sub-scores, image sensitivities, and other numerical information

Output:

results - The results object for the pipeline task is returned.

3.5.2 Parameter List

vis	
List of visibility data files for which flagging and calibration information will be exported. Defaults to the list maintained in the pipeline context. Example: vis=['X227.ms', 'X228.ms']	

parameter name	description
session	List of sessions one per visibility file. Currently defaults to a single virtual session containing all the visibility files in vis. In the future, this will default to the set of observing sessions defined in the context. Example: session=['session1', 'session2']
imaging_products_only	Export science target imaging products only
exportmses	Export the final MeasurementSets instead of the final flags, calibration tables, and calibration instructions.
pprfile	Name of the pipeline processing request to be exported. Defaults to a file matching the template 'PPR_*.xml'. Example: pprfile=['PPR_GRB021004.xml']
calintents	List of calibrator image types to be exported. Defaults to all standard calibrator intents, 'BANDPASS', 'PHASE', 'FLUX'. Example: 'PHASE'
calimages	List of calibrator images to be exported. Defaults to all calibrator images recorded in the pipeline context. Example: calimages=['3C454.3.bandpass', '3C279.phase']
targetimages	List of science target images to be exported. Defaults to all science target images recorded in the pipeline context. Example: targetimages=['NGC3256.band3', 'NGC3256.band6']
products_dir	Name of the data products subdirectory. Defaults to './'. Example: products_dir='/products'

Table	5 - continued	d from	previous	page
-------	---------------	--------	----------	------

3.5.3 Examples

1. Export the pipeline results for a single session to the data products directory:

```
>>> !mkdir ../products
>>> hif_exportdata(products_dir='../products')
```

2. Export the pipeline results to the data products directory specify that only the gain calibrator images be saved:

```
>>> !mkdir ../products
>>> hif exportdata(products dir='../products', calintents='*PHASE*')
```

3.6 hifa_flagdata

3.6.1 Task description

The hifa_flagdata data performs basic flagging operations on a list of measurements including:

- applying online flags
- applying a flagging template
- partial polarization flagging
- autocorrelation data flagging
- shadowed antenna data flagging
- · scan-based flagging by intent or scan number
- edge channel flagging, as needed
- low atmospheric transmission flagging

About the spectral window edge channel flagging:

- For TDM spectral windows, a number of edge channels are always flagged, according to the fracspw and fracspwfps parameters (the latter operates only on spectral windows with 62, 124, or 248 channels). With the default setting of fracspw, the number of channels flagged on each edge is 2, 4, or 8 for 64, 128, or 256-channel spectral windows, respectively.
- For most FDM spectral windows, no edge flagging is done. The only exceptions are ACA spectral windows that encroach too close to the baseband edge. Channels that lie closer to the baseband edge than the following values are flagged: 62.5, 40, 20, 10, and 5 MHz for spectral windows with bandwidths of 1000, 500, 250, 125, and 62.5 MHz, respectively. A warning is generated in the weblog if flagging occurs due to proximity to the baseband edge. By definition, 2000 MHz spectral windows always encroach the baseband edge on both sides of the spectral window, and thus are always flagged on both sides in order to achieve 1875 MHz bandwidth (in effect, they are flagged by 62.5 MHz on each side), and thus no warning is generated.

Output:

results - The results object for the pipeline task is returned.

3.6.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets defined in the pipeline context.
autocorr	Flag autocorrelation data.
shadow	Flag shadowed antennas.
tolerance	Amount of antenna shadowing tolerated, in meters. A positive number allows antennas to overlap in projection. A negative number forces antennas apart in projection. Zero implies a distance of radius_1+radius_2 between antenna centers.
scan	Flag a list of specified scans.
scannumber	A string containing a comma delimited list of scans to be flagged. Example: scannumber='3,5,6'
intents	A string containing a comma delimited list of intents against which the scans to be flagged are matched. Example: intents='* <i>BANDPASS</i> *'
edgespw	Flag the edge spectral window channels.
fracspw	Fraction of channels to flag at both edges of TDM spectral windows.
fracspwfps	Fraction of channels to flag at both edges of ACA TDM spectral windows that were created with the earlier (original) implementation of the frequency profile synthesis (FPS) algorithm.
online	Apply the online flags.

parameter name	description
partialpol	Identify integrations in multi-polarisation data where part of the polarization products are already flagged, and flag the other polarization products in those integrations.
lowtrans	Flag spectral windows for which a significant fraction of the channels have atmospheric transmission below the threshold (mintransrepspw, mintransnonrepspws).
mintransnonrepspws	This atmospheric transmissivity threshold is used to flag a non-representative science spectral window when more than 60% of its channels have a transmissivity below this level.
mintransrepspw	This atmospheric transmissivity threshold is used to flag the representative science spectral window when more than 60% of its channels have a transmissivity below this level.
fileonline	File containing the online flags. These are computed by the h_init or hif_importdata data tasks. If the online flags files are undefined a name of the form 'msname.flagonline.txt' is assumed.
template	Apply flagging templates
filetemplate	The name of a text file that contains the flagging template for RFI, birdies, telluric lines, etc. If the template flags files is undefined a name of the form 'msname.flagtemplate.txt' is assumed.
hm_tbuff	The heuristic for computing the default time interval padding parameter. The options are 'halfint' and 'manual'. In 'halfint' mode tbuff is set to half the maximum of the median integration time of the science and calibrator target observations. The value of 0.048 seconds is subtracted from the lower time limit to accommodate the behavior of the ALMA Control system.
tbuff	The time in seconds used to pad flagging command time intervals if hm_tbuff = 'manual'. The default in manual mode is no flagging.

Table	6 –	continued	from	previous	page
rabic	0	Continueu	nom	previous	page

parameter name	description
qa0	QA0 flags.
qa2	QA2 flags.
flagbackup	Back up any pre-existing flags.

Table 6 – continued from previous page

3.6.3 Examples

1. Do basic flagging on a MeasurementSet:

>>> hifa_flagdata()

2. Do basic flagging on a MeasurementSet flagging additional scans selected by number as well:

 $>>> hifa_flagdata(scannumber='13,18')$

3.7 hifa_flagtargets

3.7.1 Task description

The hifa_flagtargets task performs basic flagging operations on a list of science target MeasurementSets, including:

• applying a flagging template

Output:

results - The results object for the pipeline task is returned.

3.7.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets defined in the pipeline context.
template	Apply flagging templates; defaults to True.

parameter name	description
filetemplate	The name of a text file that contains the flagging template for issues with the science target data etc. If the template flags files is undefined a name of the form 'msname_flagtargetstemplate.txt' is assumed.
flagbackup	Back up any pre-existing flags; defaults to False.

Table 7 – continued from previous page

3.7.3 Examples

1. Do basic flagging on a science target MeasurementSet:

```
>>> hifa_flagtargets()
```

3.8 hifa_fluxcalflag

3.8.1 Task description

Search the built-in solar system flux calibrator line catalog for overlaps with the science spectral windows. Generate a list of line overlap regions and flagging commands.

Output:

results - The results object for the pipeline task is returned.

3.8.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets defined in the pipeline context.
field	The list of field names or field ids for which the models are to be set. Defaults to all fields with intent 'AMPLITUDE'. Example: field='3C279', field='3C279, M82'

parameter name	description
intent	A string containing a comma delimited list of intents against which the selected fields are matched. Defaults to all data with amplitude intent. Example: intent='AMPLITUDE'
spw	Spectral windows and channels for which bandpasses are computed. Defaults to all science spectral windows. Example: spw='11,13,15,17'
threshold	If the fraction of a spectral window occupied by line regions is greater than this threshold value, then flag the entire spectral window.
appendlines	Append user defined line regions to the line dictionary.
linesfile	Read in a file containing lines regions and append it to the builtin dictionary. Blank lines and comments beginning with # are skipped. The data is contained in 4 whitespace delimited fields containing the solar system object field name, e.g. 'Callisto', the molecular species name, e.g. '13CO', and the starting and ending frequency in GHz.
applyflags	Boolean for whether to apply the generated flag commands. (default True)

Table 8 – continued from previous page

3.8.3 Examples

1. Locate known lines in any solar system object flux calibrators:

 $>>> hifa_fluxcalflag()$

3.9 hifa_gaincalsnr

3.9.1 Task description

The gaincal solution signal-to-noise is determined as follows:

- For each data set the list of source(s) to use for the per-scan gaincal solution signal-to-noise estimation is compiled based on the values of the field, intent, and spw parameters.
- Source fluxes are determined for each spw and source combination.
- Fluxes in Jy are derived from the pipeline context.
- Pipeline context fluxes are derived from the online flux calibrator catalog, the ASDM, or the user via the flux.csv file.
- If no fluxes are available the task terminates.
- Atmospheric calibration and observations scans are determined for each spw and source combination.
- If intent is set to 'PHASE' are there are no atmospheric scans associated with the 'PHASE' calibrator, 'TARGET' atmospheric scans will be used instead.
- If atmospheric scans cannot be associated with any of the spw and source combinations the task terminates.
- Science spws are mapped to atmospheric spws for each science spw and source combinations.
- If mappings cannot be determined for any of the spws the task terminates.
- The median Tsys value for each atmospheric spw and source combination is determined from the SYSCAL table. Medians are computed first by channel, then by antenna, in order to reduce sensitivity to deviant values.
- The science spw parameters, exposure time(s), and integration time(s) are determined.
- The per scan sensitivity and signal-to-noise estimates are computed per science spectral window. Nominal Tsys and sensitivity values per receiver band provide by the ALMA project are used for this estimate.
- The QA score is based on how many signal-to-noise estimates greater than the requested signal-to-noise ratio can be computed.

Output:

results - The results object for the pipeline task is returned.

3.9.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the pipeline context. Example: vis=['M82A.ms', 'M82B.ms']

parameter name	description
field	The list of field names of sources to be used for signal to noise estimation. Defaults to all fields with the standard intent. Example: field='3C279'
intent	A string containing a comma delimited list of intents against which the selected fields are matched. Defaults to 'PHASE'. Example: intent='BANDPASS'
spw	The list of spectral windows and channels for which gain solutions are computed. Defaults to all the science spectral windows for which there are both 'intent' and TARGET intents. Example: spw='13,15'
phasesnr	The required gaincal solution signal to noise. Example: phasesnr=20.0
bwedgefrac	The fraction of the bandwidth edges that is flagged. Example: bwedgefrac=0.0
hm_nantennas	The heuristics for determines the number of antennas to use in the signal to noise estimate. The options are 'all' and 'unflagged'. The 'unflagged' options is not currently supported. Example: hm_nantennas='unflagged'
maxfracflagged	The maximum fraction of an antenna that can be flagged before it is excluded from the signal to noise estimate. Example: maxfracflagged=0.80

Table 9 – continued from previous page

3.9.3 Examples

1. Estimate the per scan gaincal solution sensitivities and signal to noise ratios for all the science spectral windows:

>>> hifa_gaincalsnr()

3.10 hifa_gfluxscale

3.10.1 Task description

Derive flux densities for point source transfer calibrators using flux models for reference calibrators.

Flux values are determined by:

- computing phase only solutions for all the science spectral windows using the calibrator data selected by the reference and refintent parameters and the transfer and transintent parameters, the value of the phaseupsolint parameter, and any spw combination determined in hifa_spwphaseup.
- computing complex amplitude only solutions for all the science spectral windows using calibrator data selected with reference and refintent parameters and the transfer and transintent parameters, the value of the solint parameter.
- transferring the flux scale from the reference calibrators to the transfer calibrators using refspwmap for windows without data in the reference calibrators.
- inserting the computed flux density values into the MODEL_DATA column.

Resolved calibrators are handled via antenna selection either automatically (hm_resolvedcals = 'automatic') or manually (hm_resolvedcals = 'manual'). In the former case, antennas closer to the reference antenna than the uv distance where visibilities fall to peak_fraction of the peak are used. In manual mode, the antennas specified in antenna are used.

Note that the flux corrected calibration table computed internally is not currently used in later pipeline apply calibration steps.

Output:

results - The results object for the pipeline task is returned.

3.10.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the pipeline context. Example: ['M32A.ms', 'M32B.ms']

parameter name	description
reference	A string containing a comma delimited list of field names defining the reference calibrators. Defaults to field names with intent '* <i>AMP</i> *'.
	Example: reference='M82,3C273'
transfer	A string containing a comma delimited list of field names defining the transfer calibrators. Defaults to field names with intent '* <i>PHASE</i> *'.
	Example: transfer='J1328+041,J1206+30'
refintent	A string containing a comma delimited list of intents used to select the reference calibrators. Defaults to 'AMPLITUDE'.
	Example: refintent='', refintent='AMPLITUDE'
transintent	A string containing a comma delimited list of intents defining the transfer calibrators. Defaults to
	'PHASE,BANDPASS,CHECK,POLARIZATION,POLANGLE,POLLEAKAG
	Example: transintent=", transintent='PHASE,BANDPASS'
refspwmap	Vector of spectral window ids enabling scaling across spectral windows. Defaults to no scaling.
	Example: refspwmap=[1,1,3,3] - (4 spws, reference fields in 1 and 3, transfer fields in 0,1,2,3
reffile	Path to a file containing flux densities for calibrators. Setjy will be run for any that have both reference and transfer intents. Values given in this file will take precedence over MODEL column values set by previous tasks. By default, the path is set to the CSV file created by hifa_importdata, consisting of catalogue fluxes extracted from the ASDM and / or edited by the user.
	example: reffile=", reffile='working/flux.csv'

Table 10 – continued from previous page

parameter name	description
phaseupsolint	Time solution intervals in CASA syntax for the phase solution.
	example: phaseupsolint='inf', phaseupsolint='int', phaseupsolint='100sec'
solint	Time solution intervals in CASA syntax for the amplitude solution.
	example: solint='inf', solint='int', solint='100sec'
minsnr	Minimum signal-to-noise ratio for gain calibration solutions.
	example: minsnr=1.5, minsnr=0.0
refant	A string specifying the reference antenna(s). By default, this is read from the context.
	Example: refant='DV05'
hm_resolvedcals	Heuristics method for handling resolved calibrators. The options are 'automatic' and 'manual'. In automatic mode, antennas closer to the reference antenna than the uv distance where visibilities fall to peak_fraction of the peak are used. In manual mode, the antennas specified in antenna are used.
antenna	A comma delimited string specifying the antenna names or ids to be used for the fluxscale determination. Used in hm_resolvedcals = 'manual' mode.
	Example: antenna='DV16,DV07,DA12,DA08'
peak_fraction	The limiting UV distance from the reference antenna for antennas to be included in the flux calibration. Defined as the point where the calibrator visibilities have fallen to peak_fraction of the peak value.

Table 10 – continued from previous page

3.10.3 Examples

1. Compute flux values for the phase calibrator using model data from the amplitude calibrator:

>>> hifa gfluxscale()

3.11 hifa_gfluxscaleflag

3.11.1 Task description

This task computes the flagging heuristics on the phase calibrator and flux calibrator by calling hif_corrected ampflag which looks for outlier visibility points by statistically examining the scalar difference of corrected amplitudes minus model amplitudes, and flags those outliers. The philosophy is that only outlier data points that have remained outliers after calibration will be flagged. The heuristic works equally well on resolved calibrators and point sources because it is not performing a vector difference, and thus is not sensitive to nulls in the flux density vs. uvdistance domain. Note that the phase of the data is not assessed.

In further detail, the workflow is as follows: a snapshot of the flagging state is preserved at the start, a preliminary phase and amplitude gaincal solution is solved and applied, the flagging heuristics are run and any outliers are marked for flagging, the flagging state is restored from the snapshot. If any outliers were found, then these are flagged. Plots are generated at two points in this workflow: after preliminary phase and amplitude calibration but before flagging heuristics are run, and after flagging heuristics have been run and applied. If no points were flagged, the 'after' plots are not generated or displayed. The score for this stage is the standard data flagging score, which depends on the fraction of data flagged.

Output:

results - The results object for the pipeline task is returned.

3.11.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the pipeline context. Example: vis=['M51.ms']
intent	A string containing a comma delimited list of intents against which the selected fields are matched. If undefined (default), it will select all data with the AMPLITUDE, PHASE, and CHECK intents, except for one case: if one of the AMPLITUDE intent fields was also used for BANDPASS, then this task will select only data with PHASE and CHECK intents. Example: intent='* <i>PHASE</i> *'
	continues on next page

description
The phase correction solution interval in CASA syntax.
Example: phaseupsolint='300s'
Time and channel solution intervals in CASA syntax.
Example: solint='inf,10ch', solint='inf'
Solutions below this SNR are rejected.
Reference antenna names. Defaults to the value(s) stored in the pipeline context. If undefined in the pipeline context defaults to the CASA reference antenna naming scheme.
Example: refant='DV01', refant='DV06,DV07'
Lower sigma threshold for identifying outliers as a result of bad antennas within individual timestamps. Example: antnegsig=4.0
Upper sigma threshold for identifying outliers as a result of bad antennas within individual timestamps. Example: antpossig=4.6
Threshold for maximum fraction of timestamps that are allowed to contain outliers. Example: tmantint=0.063
Threshold for maximum fraction of "outlier timestamps" over "total timestamps" that a baseline may be a part of. Example: tmint=0.085
Initial threshold for maximum fraction of "bad baselines" over "all baselines" that an antenna may be a part of. Example: tmbl=0.175

Table 11 – continued from previous page

parameter name	description
antblnegsig	Lower sigma threshold for identifying outliers as a result of "bad baselines" and/or "bad antennas" within baselines, across all timestamps. Example: antblnegsig=3.4
antblpossig	Threshold for identifying outliers as a result of "bad baselines" and/or "bad antennas" within baselines, across all timestamps. Example: antblpossig=3.2
relaxed_factor	Relaxed value to set the threshold scaling factor to under certain conditions (see task description). Example: relaxed_factor=2.0
niter	Maximum number of times to iterate on evaluation of flagging heuristics. If an iteration results in no new flags, then subsequent iterations are skipped. Example: niter=2

Table 11 – continued from previous page

3.11.3 Examples

1. run with recommended settings to create flux scale calibration with flagging using recommended thresholds:

>>> hifa gfluxscaleflag()

3.12 hifa_imageprecheck

3.12.1 Task description

In this task, the representative source and the spw containing the representative frequency selected by the PI in the OT are used to calculate the synthesized beam and to make sensitivity estimates for the aggregate bandwidth and representative bandwidth for several values of the Briggs robust parameter. This information is reported in a table in the weblog. If no representative target/frequency information is available, it defaults to the first target and center of first spw in the data (e.g. pre-Cycle 5 data does not have this information available). The best Briggs robust parameter to achieve the PI's desired angular resolution is chosen automatically. See the User's guide for further details.

Output:

results - The results object for the pipeline task is returned.

3.12.2 Parameter List

parameter name	description
vis	The list of input Manuary and ster Defaults to the list of
	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hif_importdata task.
	': use all MeasurementSets in the context.
	Examples: 'ngc5921.ms', ['ngc5921a.ms', ngc5921b.ms', 'ngc5921c.ms']
calcsb	Force (re-)calculation of sensitivities and beams; defaults to False.
parallel	Use MPI cluster where possible

3.12.3 Examples

1. run with recommended settings to perform checks prior to imaging:

```
>>> hifa_imageprecheck()
```

2. run to perform checks prior to imaging and force the re-calculation of sensitivities and beams:

```
>>> hifa imageprecheck(calcsb=True)
```

3.13 hifa_importdata

3.13.1 Task description

The hifa_importdata task loads the specified visibility data into the pipeline context unpacking and / or converting it as necessary.

If the overwrite input parameter is set to False and the task is asked to convert an input ASDM input to an MS, then when the output MS already exists in the output directory, the importasdm conversion step is skipped, and the existing MS will be imported instead.

Output:

results - The results object for the pipeline task is returned.

3.13.2 Parameter List

parameter name	description
vis	List of visibility data files. These may be ASDMs, tar files of ASDMs, MSes, or tar files of MSes. If ASDM files are specified, they will be converted to MS format. Example: vis=['X227.ms', 'asdms.tar.gz']
session	List of session names, one for each visibility dataset, used to group the MSes into sessions. Example: session=['session_1', 'session_2']
asis	Creates verbatim copies of the ASDM tables in the output MS. The value given to this option must be a list of table names separated by space characters.
process_caldevice	Import the caldevice table from the ASDM.
overwrite	Overwrite existing files on import; defaults to False. When converting ASDM to MS, if overwrite=False and the MS already exists in the output directory, then this existing MS dataset will be used instead. Example: overwrite=True
nocopy	Disable copying of MS to working directory; defaults to False. Example: nocopy=True
bdfflags	Apply BDF flags on import.
	continues on next page

parameter name	description
datacolumns	Dictionary defining the data types of existing columns.
	The format is:
	{'data': 'data type 1'}
	or
	{'data': 'data type 1', 'corrected': 'data type 2'}
	For ASDMs the data type can only be RAW and one
	can only specify it for the data column.
	For MSes one can define two different data types
	for the DATA and CORRECTED_DATA columns and they
	can be any of the known data types (RAW,
	REGCAL_CONTLINE_ALL, REGCAL_CONTLINE_SCIENCE,
	SELFCAL_CONTLINE_SCIENCE, REGCAL_LINE_SCIENCE,
	SELFCAL_LINE_SCIENCE, BASELINED, ATMCORR). The
	intent selection strings _ALL or _SCIENCE can be
	skipped. In that case the task determines this
	automatically by inspecting the existing intents
	in the dataset.
	Usually, a single datacolumns dictionary is used
	for all datasets. If necessary, one can define a
	list of dictionaries, one for each EB, with
	different setups per EB.
	If no types are specified,
	{'data':'raw','corrected':'regcal_contline'}
	or { 'data':'raw' } will be assumed, depending on
	whether the corrected column exists or not.
lazy	
	Use the lazy filler import.
dbservice	
	Use the online flux catalog.
ocorr_mode	ALMA default set to ca.
createmms	
	Create an MMS.

Table	13 – continued from previous page	

Table 15 – Continued norm previous page	
parameter name	description
minparang	
	Minimum required parallactic angle range for polarisation
	calibrator, in degrees. The default of 0.0 is used for
	non-polarisation processing.

Table 13 - continued from previous page

3.13.3 Examples

1. Load an ASDM list in the ../rawdata subdirectory into the context:

```
>>> hifa_importdata(vis=['../rawdata/uid___A002_X30a93d_X43e', '../rawdata/uid_A002_\rightarrowx30a93d_X44e'])
```

2. Load an MS in the current directory into the context:

 $>>> hifa_importdata(vis=['uid__A002_X30a93d_X43e.ms'])$

3. Load a tarred ASDM in ../rawdata into the context:

>>> hifa_importdata(vis=['../rawdata/uid___A002_X30a93d_X43e.tar.gz'])

4. Import a list of MeasurementSets:

```
>>> myvislist = ['uid\_\_A002\_X30a93d\_X43e.ms', 'uid\_A002\_x30a93d\_X44e.ms'] \\>>> hifa importdata(vis=myvislist)
```

5. Run with explicit setting of data column types:

```
>>> hifa_importdata(vis=['uid___A002_X30a93d_X43e_targets.ms'], datacolumns={'data': 'regcal_
\Rightarrowcontline'})
>>> hifa_importdata(vis=['uid___A002_X30a93d_X43e_targets_line.ms'], datacolumns={'data':
\Rightarrow'regcal_line', 'corrected': 'selfcal_line'})
```

3.14 hifa_lock_refant

3.14.1 Task description

hifa_lock_refant marks the reference antenna list as "locked" for specified measurement sets, preventing modification of the refant list by subsequent tasks.

After executing hifa_lock_refant, all subsequent gaincal calls will by default be executed with refantmode='strict'.

The refant list can be unlocked with the hifa_unlock_refant task.

Output:

results - The results object for the pipeline task is returned.

3.14.2 Parameter List

parameter name	description
vis	
	List of input MeasurementSets. Defaults to the list of
	MeasurementSets specified in the pipeline context.
	Example: vis=['ngc5921.ms']

3.14.3 Examples

1. Lock the refant list for all MSes in pipeline context:

```
>>> hifa_lock_refant()
```

3.15 hifa_polcal

3.15.1 Task description

Derive the instrumental polarization calibrations for ALMA using the polarization calibrators.

Output:

results – The results object for the pipeline task is returned.

3.15.2 Parameter List

parameter name	description
vis	
	The list of input MeasurementSets. Defaults to the list of
	MeasurementSets specified in the pipeline context.
	Example: ['M32A.ms', 'M32B.ms']
solint_chavg	
-	Channel averaging to include in solint for gaincal steps
	producing cross-hand delay, cross-hand phase, and leakage
	(D-terms) solutions.
	Default: '5MHz'

parameter name	description
vs_stats	
	List of visstat statistics to use for diagnostic comparison
	between the concatenated session MS and individual MSes in
	that session after applying polarization calibration tables.
	Default: ['min','max','mean']
vs_thresh	
	Threshold to use in diagnostic comparison of visstat
	statistics; relative differences larger than this threshold
	are reported in the CASA log.
	Default: 1e-3

Table 15 – continued from previous page

3.15.3 Examples

1. Compute the polarization calibrations:

 $>>> hifa_polcal()$

3.16 hifa_polcalflag

3.16.1 Task description

This task flags corrected visibility outliers in the polarization calibrator data using the hif_corrected ampflag heuristics. Output:

results - The results object for the pipeline task is returned.

3.16.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of
	MeasurementSets specified in the h_init or hif_importdata task. ': use all MeasurementSets in the context
	Examples: 'ngc5921.ms', ['ngc5921a.ms', ngc5921b.ms', 'ngc5921c.ms']

3.16.3 Examples

1. Run with recommended settings to flag visibility outliers in the polarization calibrator data:

>>> hifa polcalflag()

3.17 hifa_renorm

3.17.1 Task description

This task makes an assessment, and optionally applies a correction, to data suffering from incorrect amplitude normalization caused by bright astronomical lines detected in the autocorrelations of some target sources.

For a full description of the effects of bright emission lines and the correction heuristics used in this task, please see the Pipeline User Guide.

Output:

results - The results object for the pipeline task is returned.

3.17.2 Parameter List

parameter name	description
vis	List of input MeasurementSets. Defaults to the list of MeasurementSets specified in the pipeline context. Example: vis=['ngc5921.ms']
apply	Boolean to select whether to apply the renormalization correction (True), or only run the assessment (False, default). Example: apply=True
threshold	Apply correction if max correction is above this threshold value and apply = True. Default is 1.02 (i.e. 2%). Example: threshold=1.02
correctATM	Use the ATM model transmission profiles to try and correct for any ATM residual features that get into the scaling spectra.

parameter name	description
spw	The list of real (not virtual - i.e. the actual spwIDs in the MS) spectral windows to evaluate. Set to spw=" by default, which means the task will select all relevant (science FDM) spectral windows. Note that for data with multiple MSs, a list with the correct spectral window selection for each MS can be provided. Examples: spw="11,13,15,17" spw=["11,13,15,17", "5,7,11,13"]
excludechan	Channels to exclude in either channel or frequency space (TOPO, GHz), specifying the real (not virtual) spectral window per selection. Note that for data with multiple MSs, a list of dictionaries with the correct selection for each MS can be provided. Examples: excludechan={'22':'100~150;800~850', '24':'100~200'} excludechan={'22':'230.1GHz~230.2GHz'} excludechan=[{'22':'100~150'}, {'15':'100~150'}]
atm_auto_exclude	Automatically find and exclude regions with atmospheric features. Default is False
bwthreshspw	Bandwidth beyond which a SPW is split into chunks to fit separately. The default value for all SPWs is 120e6, and this parameter allows one to override it for specific SPWs, due to needing potentially various 'nsegments' when EBs have very different SPW bandwidths. Example: bwthreshspw={'16: 64e6, '22: 64e6}

Table 17 – continued from previous page

3.17.3 Examples

1. Run with recommended settings to assess the need for an ALMA amplitude renormalization correction.

>>> hifa renorm()

2. Run to assess the necessary ALMA amplitude renormalization correction, and apply this correction if it exceeds a threshold of 3% (1.03).

```
>>> hifa renorm(apply=True, threshold=1.03)
```

3.18 hifa_restoredata

3.18.1 Task description

The hifa_restoredata task restores flagged and calibrated MeasurementSets from archived ASDMs and pipeline flagging and calibration date products.

The hifa_restoredata restores flagged and calibrated data from archived ASDMs and pipeline flagging and calibration data products. Pending archive retrieval support hifa_restoredata assumes that the required products are available in the rawdata_dir in the format produced by the hifa_exportdata task.

hifa_restoredata assumes that the following entities are available in the raw data directory:

- the ASDMs to be restored
- for each ASDM in the input list:
 - a compressed tar file of the final flagversions file, e.g. uid___A002_X30a93d_X43e.ms.flagversions.tar.gz
 - a text file containing the applycal instructions, e.g. uid___A002_X30a93d_X43e.ms.calapply.txt
 - a compressed tar file containing the caltables for the parent session, e.g. uid___A001_X74_X29.session_3.caltables.tar.gz

hifa_restoredata performs the following operations:

- imports the ASDM(s)
- · removes the default MS.flagversions directory created by the filler
- · restores the final MS.flagversions directory stored by the pipeline
- restores the final set of pipeline flags to the MS
- · restores the final calibration state of the MS
- · restores the final calibration tables for each MS
- applies the calibration tables to each MS

When importing the ASDM and converting it to a Measurement Set (MS), if the output MS already exists in the output directory, then the importasdm conversion step is skipped, and instead the existing MS will be imported.

Output:

results - The results object for the pipeline task is returned.

3.18.2 Parameter List

parameter name	description
vis	List of raw visibility data files to be restored. Assumed to be in the directory specified by rawdata_dir. Example: vis=['uidA002_X30a93d_X43e']
session	List of sessions one per visibility file.
	Example: session=['session_3']
products_dir	Name of the data products directory to copy calibration products from. The parameter is effective only when copytoraw = True. When copytoraw = False, calibration products in rawdata_dir will be used.
	Example: products_dir='myproductspath'
copytoraw	Copy calibration and flagging tables from products_dir to rawdata_dir directory.
	Example: copytoraw=False
rawdata_dir	Name of the rawdata subdirectory.
	Example: rawdata_dir='myrawdatapath'
lazy	Use the lazy filler option.
	Example: lazy=True
bdfflags	Set the BDF flags.
	Example: bdfflags=False
ocorr_mode	Set ocorr_mode.
	Example: ocorr_mode='ca'

Table 10 - continued from previous page	
parameter name	description
asis	
	Creates verbatim copies of the ASDM tables in the output MS.
	The value given to this option must be a string containing a
	list of table names separated by whitespace characters.
	Example: asis='Source Receiver'

Table 18 – continued from previous page

3.18.3 Examples

1. Restore the pipeline results for a single ASDM in a single session:

```
>>> hifa_restoredata(vis=['uid___A002_X30a93d_X43e'], session=['session_1'], ocorr_mode='ca')
```

3.19 hifa_session_refant

3.19.1 Task description

This task re-evaluates the reference antenna lists from all measurement sets within a session and combines these to select a single common reference antenna (per session) that is to be used by any subsequent pipeline stages.

Output:

results – The results object for the pipeline task is returned.

3.19.2 Parameter List

parameter name	description
vis	
	List of input MeasurementSets. Defaults to the list of
	MeasurementSets specified in the pipeline context.
	Example: vis=['ngc5921.ms']
phase_threshold	Thrashold (in degrees) used to identify absolute phase
	Threshold (in degrees) used to identify absolute phase
	solution outliers in caltables.
	Example: phase_threshold=0.005

3.19.3 Examples

1. Compute a single common reference antenna per session:

```
>>> hifa session refant()
```

3.20 hifa_spwphaseup

3.20.1 Task description

The spw map for phase calibration is computed. Phase offsets as a function of spectral window are computed using high signal-to-noise calibration observations.

Previous calibrations are applied on the fly.

hifa_spwphaseup performs two functions:

- Determines the spectral window mapping or combination mode, for each phase and check source, to use when solving for phase as a function of time (gfluxscale and timegaincal), and when applying those solutions to targets.
- Computes the per-spectral-window phase offset table that will be applied to the data to remove mean phase differences between the spectral windows.

If hm_spwmapmode = 'auto', then the spectral window map is computed for each SpectralSpec and each source with phase or check intent, using the following algorithm:

- Estimate the per-spectral-window (spw) per-scan signal-to-noise ratio for each phase and check source based on catalog flux densities, Tsys, number of antennas, and integration scan time.
- If the signal-to-noise of all spws is greater than phasesnr, then hm_spwmapmode = 'default' mapping is used in which each spw is used to calibrate itself.
- If the signal-to-noise of only some spws are greater than the value of phasesnr, then each lower-SNR spw is mapped to the highest SNR spw in the same SpectralSpec.
- If all spws have low SNR, or SNR cannot be computed for any reason (for example, there is no flux information), then hm spwmapmode = 'combine'.

If hm_spwmapmode = 'combine', hifa_spwphaseup maps all the science windows to a single science spectral window. For example, if the list of science spectral windows is [9, 11, 13, 15] then all the science spectral windows in the data will be combined and mapped to the science window 9 in the combined phase vs time calibration table.

If hm_spwmapmode = 'simple', a mapping from narrow science to wider science spectral windows is computed using the following algorithm:

- Construct a list of the bandwidths of all the science spectral windows.
- · Determine the maximum bandwidth in this list as 'maxbandwidth'
- For each science spectral window with bandwidth less than 'maxbandwidth' construct a list of spectral windows with bandwidths greater than minfracmaxbw * 'maxbandwidth', then select the spectral window in this list whose band center most closely matches the band center of the narrow spectral window, and preferentially match within the same baseband if samebb = True.

If hm spwmapmode = 'default' the spw mapping is assumed to be one to one.

Phase offsets per spectral window are determined by computing a phase only gain calibration on the selected data, normally the high signal-to-noise bandpass calibrator observations, using the solution interval 'inf'.

At the end of the task the spectral window map and the phase offset calibration table in the pipeline are stored in the context for use by later tasks.

Finally, the SNR of the calibration solutions are inspected and if the median value on a per-spw basis does not reach specific thresholds, then issue a warning and reduced QA score, with thresholds at phasesnr *0.75 (blue), *0.5 (yellow) and *0.33 (red).

Output:

results – The results object for the pipeline task is returned.

3.20.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the pipeline context. Example: vis=['M82A.ms', 'M82B.ms']
caltable	The list of output calibration tables. Defaults to the standard pipeline naming convention.
	Example: caltable=['M82.gcal', 'M82B.gcal']
field	The list of field names or field ids for which phase offset solutions are to be computed. Defaults to all fields with the default intent. Example: field='3C279', field='3C279, M82'
intent	A string containing a comma delimited list of intents against which the selected fields are matched. Defaults to the BANDPASS observations.
	Example: intent='PHASE'
spw	The list of spectral windows and channels for which gain solutions are computed. Defaults to all the science spectral windows. Example: spw='13,15'
	continuos on novt pago

parameter name	description
hm_spwmapmode	The spectral window mapping mode. The options are: 'auto', 'combine', 'simple', and 'default'. In 'auto' mode hifa_spwphaseup estimates the SNR of the phase calibrator observations and uses these estimates to choose between 'combine' mode (low SNR) and 'default' mode (high SNR). In combine mode all spectral windows are combined and mapped to one spectral window. In 'simple' mode narrow spectral windows are mapped to wider ones using an algorithm defined by 'maxnarrowbw', 'minfracmaxbw', and 'samebb'. In 'default' mode the spectral window map defaults to the standard one to one mapping. Example: hm_spwmapmode='combine'
maxnarrowbw	The maximum bandwidth defining narrow spectral windows. Values must be in CASA compatible frequency units. Example: maxnarrowbw="
minfracmaxbw	The minimum fraction of the maximum bandwidth in the set of spws to use for matching. Example: minfracmaxbw=0.75
samebb	Match within the same baseband if possible. Example: samebb=False
phasesnr	The required gaincal solution signal-to-noise. Example: phaseupsnr=20.0
bwedgefrac	The fraction of the bandwidth edges that is flagged. Example: bwedgefrac=0.0 continues on next page

Table 20	- continued	from	previous page	è
----------	-------------	------	---------------	---

parameter name	description
hm_nantennas	The heuristics for determines the number of antennas to use in the signal-to-noise estimate. The options are 'all' and 'unflagged'. The 'unflagged' options is not currently supported. Example: hm_nantennas='unflagged'
maxfracflagged	The maximum fraction of an antenna that can be flagged before it is excluded from the signal-to-noise estimate. Example: maxfracflagged=0.80
combine	Data axes to combine for solving. Options are '', 'scan', 'spw', 'field' or any comma-separated combination. Example: combine="
refant	Reference antenna name(s) in priority order. Defaults to most recent values set in the pipeline context. If no reference antenna is defined in the pipeline context the CASA defaults are used. Example: refant='DV01', refant='DV05,DV07'
minblperant	Minimum number of baselines required per antenna for each solve. Antennas with fewer baselines are excluded from solutions. Example: minblperant=2
minsnr	Solutions below this SNR are rejected.
unregister_existing	Unregister previous spwphaseup calibrations from the pipeline context before registering the new calibrations from this task.

|--|

3.20.3 Examples

1. Compute the default spectral window map and the per spectral window phase offsets:

>>> hifa_spwphaseup()

2. Compute the default spectral window map and the per spectral window phase offsets set the spectral window mapping mode to 'simple':

>>> hifa spwphaseup(hm spwmapmode='simple')

3.21 hifa_targetflag

3.21.1 Task description

This task flags very obvious target source outliers. The calibration tables and flags accumulated in the cal library up to this point are pre-applied, then hif_correctedampflag is called for just the TARGET intent. Any resulting flags are applied and the calibration library is restored to the state before calling this task.

Because science targets are generally not point sources, the flagging algorithm needs to be more clever than for point source calibrators. The algorithm identifies outliers by examining statistics within successive overlapping radial uv bins, allowing it to adapt to an arbitrary uv structure. Outliers must appear to be a potential outlier in two bins in order to be declared an outlier. To further avoid overflagging of good data, only the highest threshold levels are used (+12/-13 sigma). This stage does can add significant processing time, particularly in making the plots. So to save time, the amp vs. time plots are created only if flags are generated, and the amp vs. uv distance plots are made for only those spws that generated flags. Also, to avoid confusion in mosaics and single field surveys, the amp vs. uv distance plots only show field IDs with new flags.

Output:

results - The results object for the pipeline task is returned.

3.21.2 Parameter List

parameter name	description
vis	
	The list of input MeasurementSets. Defaults to the list of
	MeasurementSets specified in the h_init or hif_importdata task.
	": use all MeasurementSets in the context
	Examples: 'ngc5921.ms', ['ngc5921a.ms', ngc5921b.ms', 'ngc5921c.ms']

3.21.3 Examples

1. Run with recommended settings to flag outliers in science target(s):

>>> hifa_targetflag()

3.22 hifa_timegaincal

3.22.1 Task description

The time-dependent complex gains for each antenna/spwid are determined from the raw data (DATA column) divided by the model (MODEL column), for the specified fields. The gains are computed according to the spw-combination model determined in hifa_spwphaseup.

Previous calibrations are applied on the fly.

The complex gains are derived from the data column (raw data) divided by the model column (usually set with hif_setjy). The gains are obtained for the specified solution intervals, spw combination and field combination. One gain solution is computed for the science targets and one for the calibrator targets.

Good candidate reference antennas can be determined using the hif_refant task.

Previous calibrations that have been stored in the pipeline context are applied on the fly. Users can interact with these calibrations via the h_export_calstate and h_import_calstate tasks.

Output:

results – The results object for the pipeline task is returned.

3.22.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the pipeline context.
calamptable	Example: vis=['M82A.ms', 'M82B.ms']
	The list of output diagnostic calibration amplitude tables for the calibration targets. Defaults to the standard pipeline naming convention.
	Example: calamptable=['M82.gacal', 'M82B.gacal']

	description
parameter name	description
offsetstable	The list of output diagnostic phase offset tables for the calibration targets. Defaults to the standard pipeline naming convention. Example: offsetstable=['M82.offsets.gacal', 'M82B.offsets.gacal']
calphasetable	The list of output calibration phase tables for the calibration targets. Defaults to the standard pipeline naming convention. Example: calphasetable=['M82.gpcal', 'M82B.gpcal']
targetphasetable	The list of output phase calibration tables for the science targets. Defaults to the standard pipeline naming convention. Example: targetphasetable=['M82.gpcal', 'M82B.gpcal']
amptable	The list of output calibration amplitude tables for the calibration and science targets. Defaults to the standard pipeline naming convention. Example: amptable=['M82.gacal', 'M82B.gacal']
field	The list of field names or field ids for which gain solutions are to be computed. Defaults to all fields with the standard intent. Example: field='3C279', field='3C279, M82'
spw	The list of spectral windows and channels for which gain solutions are computed. Defaults to all science spectral windows. Example: spw='11', spw='11, 13'
antenna	The selection of antennas for which gains are computed. Defaults to all.
calsolint	Time solution interval in CASA syntax for calibrator source solutions.
	Example: calsolint='inf', calsolint='int', calsolint='100sec'
	continues on next page

parameter name	description
targetsolint	Time solution interval in CASA syntax for target source solutions. Example: targetsolint='inf', targetsolint='int', targetsolint='100sec'
refant	Reference antenna name(s) in priority order. Defaults to most recent values set in the pipeline context. If no reference antenna is defined in
	the pipeline context use the CASA defaults. example: refant='DV01', refant='DV05,DV07'
refantmode	Controls how the refant is applied. Currently available choices are 'flex', 'strict', and the default value of '. Setting to '' allows the pipeline to select the appropriate mode based on the state of the reference antenna list.
	Examples: refantmode='strict', refantmode=''
solnorm	Normalise the gain solutions.
minblperant	Minimum number of baselines required per antenna for each solve. Antennas with fewer baselines are excluded from solutions. Example: minblperant=2
	Example. mmolperant=2
calminsnr	Solutions below this SNR are rejected for calibrator solutions.
targetminsnr	Solutions below this SNR are rejected for science target solutions.
smodel	Point source Stokes parameters for source model (experimental) Defaults to using standard MODEL_DATA column data.
	Example: smodel=[1,0,0,0] - (I=1, unpolarized)

|--|

3.22.3 Examples

1. Compute standard per scan gain solutions that will be used to calibrate the target:

>>> hifa timegaincal()

3.23 hifa_tsysflag

3.23.1 Task description

This task flags all deviant system temperature measurements in the system temperature calibration table by running a sequence of flagging tests, each designed to look for a different type of possible error.

If a file with manual Tsys flags is provided with the filetemplate parameter, then these flags are applied prior to the evaluation of the flagging heuristics listed below.

The tests are:

- 1. Flag Tsys spectra with high median values
- 2. Flag Tsys spectra with high median derivatives. This is meant to spot spectra that are 'ringing'.
- 3. Flag the edge channels of the Tsys spectra in each SpW.
- 4. Flag Tsys spectra whose shape is different from that associated with the BANDPASS intent.
- 5. Flag 'birdies'.
- 6. Flag the Tsys spectra of all antennas in a timestamp and spw if proportion of antennas already flagged in this timestamp and spw exceeds a threshold, and flag Tsys spectra for all antennas and all timestamps in a spw, if proportion of antennas that are already entirely flagged in all timestamps exceeds a threshold.

Output:

results – The results object for the pipeline task is returned.

3.23.2 Parameter List

parameter name	description
vis	List of input MeasurementSets (Not used).
caltable	List of input Tsys calibration tables.
	Default: [] - Use the table currently stored in the pipeline context. Example: caltable=['X132.ms.tsys.s2.tbl']
flag_nmedian	True to flag Tsys spectra with high median value.
	continues on next page

parameter name	description
fnm_limit	Flag spectra with median value higher than fnm_limit * median of this measure over all spectra.
fnm_byfield	Evaluate the nmedian metric separately for each field.
flag_derivative	True to flag Tsys spectra with high median derivative.
fd_max_limit	Flag spectra with median derivative higher than fd_max_limit * median of this measure over all spectra.
flag_edgechans	True to flag edges of Tsys spectra.
fe_edge_limit	Flag channels whose channel to channel difference > fe_edge_limit * median across spectrum.
flag_fieldshape	True to flag Tsys spectra with a radically different shape to those of the ff_refintent.
ff_refintent	Data intent that provides the reference shape for 'flag_fieldshape'.
ff_max_limit	Flag Tsys spectra with 'fieldshape' metric values > ff_max_limit.
flag_birdies	True to flag channels covering sharp spectral features.
fb_sharps_limit	Flag channels bracketing a channel to channel difference > fb_sharps_limit.
flag_toomany	True to flag Tsys spectra for which a proportion of antennas for given timestamp and/or proportion of antennas that are entirely flagged in all timestamps exceeds their respective thresholds.

Table	23 -	continued	from	previous page
Iabic	20 -	Continueu	nom	previous page

parameter name	description
tmf1_limit	Flag Tsys spectra for all antennas in a timestamp and spw if proportion of antennas already flagged in this timestamp and spw exceeds tmf1_limit.
tmef1_limit	Flag Tsys spectra for all antennas and all timestamps in a spw, if proportion of antennas that are already entirely flagged in all timestamps exceeds tmef1_limit.
metric_order	Order in which to evaluate the flagging metrics that are enabled. Disabled metrics are skipped.
normalize_tsys	True to create a normalized Tsys table that is used to evaluate the Tsys flagging metrics. All newly found flags are also applied to the original Tsys caltable that continues to be used for subsequent calibration.
filetemplate	The name of a text file that contains the manual Tsys flagging template. If the template flags file is undefined, a name of the form 'msname.flagtsystemplate.txt' is assumed.

Table 23 – continued from previous page

3.23.3 Examples

1. Flag Tsys measurements using currently recommended tests:

>>> hifa_tsysflag()

2. Flag Tsys measurements using all recommended tests apart from that using the 'fieldshape' metric:

 $>>> hifa_tsysflag(flag_fieldshape=False)$

3.24 hifa_unlock_refant

3.24.1 Task description

hifa_unlock_refant marks the reference antenna list as "unlocked" for specified measurement sets, allowing the list to be modified by subsequent tasks.

After executing hifa_unlock_refant, all subsequent gaincal calls will by default be executed with refantmode='flex'.

The refant list can be locked with the hifa_lock_refant task.

Output:

results - The results object for the pipeline task is returned.

3.24.2 Parameter List

parameter name	description
vis	List of input MeasurementSets. Defaults to the list of MeasurementSets specified in the pipeline context.
	Example: vis=['ngc5921.ms']

3.24.3 Examples

1. Unlock the refant list for all MSes in pipeline context:

```
>>> hifa\_unlock\_refant()
```

3.25 hifa_wvrgcal

3.25.1 Task description

Generate a gain table based on the Water Vapor Radiometer data in each vis file. By applying the wvr calibration to the data specified by qa_intent and qa_spw , calculate a QA score to indicate its effect on interferometric data; a score > 1 implies that the phase noise is improved, a score < 1 implies that it is made worse. If the score is less than accept_threshold then the wvr gain table is not accepted into the context for subsequent use.

Output:

results – The results object for the pipeline task is returned.

3.25.2 Parameter List

parameter name	description
vis	
	List of input visibility files.
	Default: none, in which case the vis files to be used
	will be read from the context.
	Example: vis=['ngc5921.ms']

parameter name	description
caltable	List of output gain calibration tables. Default: none, in which case the names of the caltables will be generated automatically. Example: caltable='ngc5921.wvr'
offsetstable	List of input temperature offsets table files to subtract from WVR measurements before calculating phase corrections. Default: none, in which case no offsets are applied. Example: offsetstable=['ngc5921.cloud_offsets']
hm_toffset	If 'manual', set the toffset parameter to the user-specified value. If 'automatic', set the toffset parameter according to the date of the MeasurementSet; toffset=-1 if before 2013-01-21T00:00:00 toffset=0 otherwise.
toffset	Time offset (sec) between interferometric and WVR data.
segsource	If True calculate new atmospheric phase correction coefficients for each source, subject to the constraints of the tie parameter. 'segsource' is forced to be True if the tie parameter is set to a non-empty value by the user or by the automatic heuristic.
sourceflag	Flag the WVR data for these source(s) as bad and do not produce corrections for it. Requires segsource = True. Example: ['3C273']
hm_tie	If 'manual', set the tie parameter to the user-specified value. If 'automatic', set the tie parameter to include with the target all calibrators that are within 15 degrees of it: if no calibrators are that close then tie is left empty.

Table 25 – continued from previous page

parameter name	description
tie	Use the same atmospheric phase correction coefficients when calculating the WVR correction for all sources in the tie. If tie is not empty then segsource is forced to be True. Ignored unless hm_tie = 'manual'. Example: tie=['3C273,NGC253', 'IC433,3C279']
nsol	Number of solutions for phase correction coefficients during this observation, evenly distributed in time throughout the observation. It is used only if segsource=False because if segsource=True then the coefficients are recomputed whenever the telescope moves to a new source (within the limits imposed by 'tie').
disperse	Apply correction for dispersion. (Deprecated; will be removed)
wvrflag	Flag the WVR data for the listed antennas as bad and replace their data with values interpolated from the 3 nearest antennas with unflagged data.
	Example: ['DV03','DA05','PM02']
hm_smooth	If 'manual' set the smooth parameter to the user-specified value. If 'automatic', run the wvrgcal task with the range of smooth parameters required to match the integration time of the wvr data to that of the interferometric data in each spectral window.
smooth	Smooth WVR data on this timescale before calculating the correction. Ignored unless hm_smooth='manual'.
scale	Scale the entire phase correction by this factor.
maxdistm	Maximum distance in meters of an antenna used for interpolation from a flagged antenna.
	Default: -1 (automatically set to 100m if >50% of antennas are 7m antennas without WVR and otherwise set to 500m). Example: maxdistm=550

Table 25 – continued from previous page

parameter name	description
minnumants	Minimum number of nearby antennas (up to 3) used for interpolation from a flagged antenna. Example: minnumants=3
mingoodfrac	Minimum fraction of good data per antenna.
refant	Ranked comma delimited list of reference antennas.
	Example: refant='DV01,DV02'
qa_intent	The list of data intents on which the wvr correction is to be tried as a means of estimating its effectiveness.
	A QA 'view' will be calculated for each specified intent, in each spectral window in each vis file.
	Each QA 'view' will consist of a pair of 2-d images with dimensions ['ANTENNA', 'TIME'], one showing the data phase-noise before the wvr application, the second showing the phase noise after (both 'before' and 'after' images have a bandpass calibration applied as well).
	An overall QA score is calculated for each vis file, by dividing the 'before' images by the 'after' and taking the median of the result. An overall score of 1 would correspond to no change in the phase noise, a score > 1 implies an improvement.
	If the overall score for a vis file is less than the value in 'accept_threshold' then the wvr calibration file is not made available for merging into the context for use in the subsequent reduction.
	If you do not want any QA calculations then set qa_intent=".
	example: qa_intent='PHASE'
qa_bandpass_intent	The data intent to use for the bandpass calibration in the qa calculation. The default is blank to allow the underlying bandpass task to select a sensible intent if the dataset lacks BANDPASS data.

Table	25 - continued	from	previous page

norometer nome description		
parameter name	description	
qa_spw	The SpW(s) to use for the qa calculation, in the order that they should be tried. Input as a comma-separated list. The default is blank, in which case the task will try SpWs in order of decreasing median sky opacity.	
accept_threshold	The phase-rms improvement ratio (rms without wvr / rms with wvr) above which the wrvg file will be accepted into the context for subsequent application.	

Table 25 - continued from previous page

3.25.3 Examples

1. Compute the WVR calibration for all the MeasurementSets:

 $>>> hifa_wvrgcal(hm_tie='automatic')$

3.26 hifa_wvrgcalflag

3.26.1 Task description

This task will first identify for each vis whether it includes at least 3 antennas with Water Vapor Radiometer (WVR) data, and that the fraction of WVR antennas / all antennas exceeds the minimum threshold (ants_with_wvr_thresh).

If there are not enough WVR antennas by number and/or fraction, then no WVR caltable is created and no WVR calibration will be applied to the corresponding vis. If there are enough WVR antennas, then the task proceeds as follows for each valid vis:

First, generate a gain table based on the Water Vapor Radiometer data for each vis.

Second, apply the WVR calibration to the data specified by 'flag_intent', calculate flagging 'views' showing the ratio 'phase-rms with WVR / phase-rms without WVR' for each scan. A ratio < 1 implies that the phase noise is improved, a ratio > 1 implies that it is made worse.

Third, search the flagging views for antennas with anomalous high values. If any are found then recalculate the WVR calibration with the 'wvrflag' parameter set to ignore their data and interpolate results from other antennas according to 'maxdistm' and 'minnumants'.

Fourth, after flagging, if the remaining unflagged antennas with WVR number fewer than 3, or represent a smaller fraction of antennas than the minimum threshold (ants_with_wvr_thresh), then the WVR calibration file is rejected and will not be merged into the context, i.e. not be used in subsequent calibration.

Fifth, if the overall QA score for the final WVR correction of a vis file is greater than the value in 'accept_threshold' then make available the wvr calibration file for merging into the context and use in the subsequent reduction.

Output:

results – The results object for the pipeline task is returned.

3.26.2 Parameter List

vis	
	List of input visibility files. Default: none, in which case the vis files to be used will be read from the context. Example: vis=['ngc5921.ms']
caltable	List of output gain calibration tables. Default: none, in which case the names of the caltables will be generated automatically. Example: caltable='ngc5921.wvr'
offsetstable	List of input temperature offsets table files to subtract from WVR measurements before calculating phase corrections. Default: none, in which case no offsets are applied. Example: offsetstable=['ngc5921.cloud_offsets']
hm_toffset	If 'manual', set the 'toffset' parameter to the user-specified value. If 'automatic', set the 'toffset' parameter according to the date of the MeasurementSet; toffset=-1 if before 2013-01-21T00:00:00 toffset=0 otherwise.
toffset	Time offset (sec) between interferometric and WVR data.
segsource	If True calculate new atmospheric phase correction coefficients for each source, subject to the constraints of the tie parameter. segsource is forced to be True if the tie parameter is set to a non-empty value by the user or by the automatic heuristic.
sourceflag	Flag the WVR data for these source(s) as bad and do not produce corrections for it. Requires segsource = True.
	Example: sourceflag=['3C273']

parameter name	description
hm_tie	If 'manual', set the tie parameter to the user-specified value. If 'automatic', set the tie parameter to include with the target all calibrators that are within 15 degrees of it: if no calibrators are that close then tie is left empty.
tie	Use the same atmospheric phase correction coefficients when calculating the WVR correction for all sources in the tie. If tie is not empty then segsource is forced to be True. Ignored unless hm_tie = 'manual'. Example: tie=['3C273,NGC253', 'IC433,3C279']
nsol	Number of solutions for phase correction coefficients during this observation, evenly distributed in time throughout the observation. It is used only if segsource=False because if segsource=True then the coefficients are recomputed whenever the telescope moves to a new source (within the limits imposed by 'tie').
disperse	Apply correction for dispersion. (Deprecated; will be removed)
wvrflag	Flag the WVR data for these antenna(s) as bad and replace its data with interpolated values. Example: wvrflag=['DV03','DA05','PM02']
hm_smooth	If 'manual' set the 'smooth' parameter to the user-specified value. If 'automatic', run the wvrgcal task with the range of 'smooth' parameters required to match the integration time of the WVR data to that of the interferometric data in each spectral window.
smooth	Smooth WVR data on this timescale before calculating the correction. Ignored unless hm_smooth='manual'.
scale	Scale the entire phase correction by this factor.

Table	26 – continued	from previous p	bade
-------	----------------	-----------------	------

parameter name	description
maxdistm	Distance in meters of an antenna used for interpolation from a flagged antenna. Default: -1 (automatically set to 100m if >50% of antennas are 7m antennas without WVR and otherwise set to 500m). Example: maxdistm=550
minnumants	Minimum number of nearby antennas (up to 3) used for interpolation from a flagged antenna. Example: minnumants=3
mingoodfrac	Minimum fraction of good data per antenna. Example: mingoodfrac=0.7
refant	Ranked comma delimited list of reference antennas. Example: refant='DV02,DV06'
flag_intent	 The data intent(s) on whose WVR correction results the search for bad WVR antennas is to be based. A 'flagging view' will be calculated for each specified intent, in each spectral window in each vis file. Each 'flagging view' will consist of a 2-d image with dimensions ['ANTENNA', 'TIME'], showing the phase noise after the WVR correction has been applied. If flag_intent is left blank, the default, the flagging views will be derived from data with the default bandpass calibration intent i.e. the first in the list BANDPASS, PHASE, AMPLITUDE for which the MeasurementSet has data.

Table 26 – continued from previous page

parameter name	description
qa_intent	The list of data intents on which the WVR correction is to be tried as a means of estimating its effectiveness.
	A QA 'view' will be calculated for each specified intent, in each spectral window in each vis file.
	Each QA 'view' will consist of a pair of 2-d images with dimensions ['ANTENNA', 'TIME'], one showing the data phase-noise before the WVR application, the second showing the phase noise after (both 'before' and 'after' images have a bandpass calibration applied as well).
	An overall QA score is calculated for each vis file, by dividing the 'before' images by the 'after' and taking the median of the result. An overall score of 1 would correspond to no change in the phase noise, a score > 1 implies an improvement.
	If the overall score for a vis file is less than the value in 'accept_threshold' then the WVR calibration file is not made available for merging into the context for use in the subsequent reduction.
qa_bandpass_intent	The data intent to use for the bandpass calibration in the qa calculation. The default is blank to allow the underlying bandpass task to select a sensible intent if the dataset lacks BANDPASS data.
accept_threshold	The phase-rms improvement ratio (rms without WVR / rms with WVR) above which the wrvg file will be accepted into the context for subsequent application.
flag_hi	True to flag high figure of merit outliers.
fhi_limit	Flag figure of merit values higher than limit * MAD.
fhi_minsample	Minimum number of samples for valid MAD estimate.

Table 26 – continued from previous page

parameter name	description
ants_with_wvr_thresh	
	This threshold sets the minimum fraction of antennas
	that should have WVR data for WVR calibration and flagging to proceed; the
	same threshold is used to determine, after flagging, whether there remain enough unflagged antennas with WVR data for the WVR calibration to be applied.
	Example: ants_with_wvr_thresh=0.5

Table 26 – continued from previous page

3.26.3 Examples

1. Compute the WVR calibration for all the MeasurementSets:

 $>>> hifa_wvrgcalflag(hm_tie='automatic')$

CHAPTER

FOUR

INTERFEROMETRY ALMA SRDP

1 tasks available.

task name	description
hifas_imageprecheck	Calculates the best robust value and Briggs weighting parameter to achieve sensitivity and angular resolution goals.

4.1 hifas_imageprecheck

4.1.1 Task description

In this task, the representative source and the spw containing the representative frequency selected by the PI in the OT are used to calculate the synthesized beam and to make sensitivity estimates for the aggregate bandwidth and representative bandwidth for several values of the robust parameter. This information is reported in a table in the weblog. If no representative target/frequency information is available, it defaults to the first target and center of first spw in the data (i.e. pre-Cycle 5 data does not have this information available). The best Briggs weighting parameter to achieve the PI's desired angular resolution is chosen automatically. See the User's guide for further details.

results – The results object for the pipeline task is returned.

4.1.2 Parameter List

parameter name	description
vis	
	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hif_importdata task.
	": use all MeasurementSets in the context
	Examples: 'ngc5921.ms', ['ngc5921a.ms', ngc5921b.ms', 'ngc5921c.ms']
desired_angular_resolution	
	User specified angular resolution goal string. '': automatic from performance parameters (default)
	Example: '1.0arcsec'
	continues on next page

parameter name	description	
calcsb	Force (re-)calculation of sensitivities and beams	
parallel	Use MPI cluster where possible	

Table 1 – continued from previous page

4.1.3 Examples

1. run with recommended settings to perform checks prior to imaging:

```
>>> hifas_imageprecheck()
```

2. run to perform checks prior to imaging and force the re-calculation of sensitivities and beams:

```
>>> hifas\_imageprecheck(calcsb=True)
```

CHAPTER

INTERFEROMETRY VLA

27 tasks available.

task name	description
hifv_analyzestokescubes	Characterize stokes IQUV flux densities as a function of frequency for
	VLASS coarse cube images
hifv_applycals	Apply calibration tables to measurement set
hifv_checkflag	Run RFI flagging using flagdata in various modes
hifv_circfeedpolcal	Perform polarization calibration for VLA circular feeds.
hifv_exportdata	Prepare and export interferometry and imaging data
hifv_exportvlassdata	Export Image data from QL, SE, and Coarse Cube modes of VLASS Survey
hifv_finalcals	Compute final gain calibration tables
hifv_fixpointing	Base fixpointing task
hifv_flagcal	Flagcal task
hifv_flagdata	Do basic deterministic flagging of a list of MeasurementSets
hifv_flagtargetsdata	Apply a flagtemplate to target data prior to running imaging pipeline tasks
hifv_fluxboot	Fluxboot
hifv_hanning	Hanning smoothing on a dataset
hifv_importdata	Imports data into the VLA pipeline
hifv_pbcor	Apply primary beam correction to VLA and VLASS images
hifv_plotsummary	Create pipeline summary plots
hifv_priorcals	Runs gaincurves, opacities, requantizer gains, antenna position corrections, tec_maps, switched power.
hifv_restoredata	Restore flagged and calibration interferometry data from a pipeline run
hifv_restorepims	Restore VLASS SE per-image measurement set data, resetting flagging, weights, and applying self-calibration.
hifv_selfcal	Perform phase-only self-calibration, per scan row, on VLASS SE images
hifv_semiFinalBPdcals	Runs a second delay and bandpass calibration and applies to calibrators to setup for RFI flagging
hifv_solint	Determines different solution intervals
hifv_statwt	Compute statistical weights and write them to measurement set
hifv_syspower	Determine amount of gain compression affecting VLA data below Ku-band
hifv_testBPdcals	Runs initial delay and bandpass calibration to setup for RFI flagging
hifv_vlasetjy	Sets flux density scale and fills calibrator model to measurement set
hifv_vlassmasking	Create clean masks for VLASS Single Epoch (SE) images

5.1 hifv_analyzestokescubes

5.1.1 Task description

Characterize stokes IQUV flux densities as a function of frequency for VLASS Coarse Cube (CC) images

Output:

results - The results object for the pipeline task is returned.

5.1.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hifv_importdata task.

5.1.3 Examples

1. Basic analyzestokescubes task

```
>>> hifv_analyzestokescubes()
```

5.2 hifv_applycals

5.2.1 Task description

hifv_applycals applies the precomputed calibration tables stored in the pipeline context to the set of visibility files using predetermined field and spectral window maps and default values for the interpolation schemes.

Users can interact with the pipeline calibration state using the tasks h_export_calstate and h_import_calstate.

Output:

results – The results object for the pipeline task is returne

5.2.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hifv_importdata task.

parameter name	description
field	A string containing the list of field names or field ids to which the calibration will be applied. Defaults to all fields in the pipeline context. example: '3C279', '3C279, M82'
intent	A string containing the list of intents against which the selected fields will be matched. Defaults to all supported intents in the pipeline context. example: ' <i>*TARGET*</i> '
spw	The list of spectral windows and channels to which the calibration will be applied. Defaults to all science windows in the pipeline. example: '17', '11, 15'
antenna	The selection of antennas to which the calibration will be applied. Defaults to all antennas. Not currently supported.
applymode	Calibration apply mode 'calflag': calibrate data and apply flags from solutions 'calflagstrict': same as above except flag spws for which calibration is unavailable in one or more tables (instead of allowing them to pass uncalibrated and unflagged) 'trial': report on flags from solutions, dataset entirely unchanged 'flagonly': apply flags from solutions only, data not calibrated 'flagonlytrict': same as above except flag spws for which calibration is unavailable in one or more tables 'calonly': calibrate data only, flags from solutions NOT applied
flagbackup	Backup the flags before the apply.
flagsum	Compute before and after flagging summary statistics
flagdetailedsum	Compute detailed flagging statistics
gainmap	Mode to map gainfields to scans.

|--|

5.2.3 Examples

1. Run the final applycals stage of the VLA CASA pipeline.

>>> hifv_applycals()

5.3 hifv_checkflag

5.3.1 Task description

Run RFI flagging using flagdata in various modes

Output:

results - The results object for the pipeline task is returned.

5.3.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hifv_importdata task.

parameter name	description
checkflagmode	
	- Standard VLA modes with improved RFI flagging heuristics: 'bpd-vla',
	'allcals-vla', 'target-vla' – blank string default use of rflag on bandpass and
	delay calibrators
	 use string 'semi' after hifv_semiFinalBPdcals() for executing rflag on calibrators
	- use string 'bpd', for the bandpass and delay calibrators:
	execute rflag on all calibrated cross-hand corrected data;
	extend flags to all correlations
	execute rflag on all calibrated parallel-hand residual data;
	extend flags to all correlations
	execute tfcrop on all calibrated cross-hand corrected data,
	per visibility; extend flags to all correlations
	execute tfcrop on all calibrated parallel-hand corrected data,
	per visibility; extend flags to all correlations
	– use string 'allcals', for all the other calibrators, with delays and BPcal
	applied:
	similar procedure as 'bpd' mode, but uses corrected data throughout
	– use string 'target', for the target data:
	similar procedure as 'allcals' mode, but with a higher SNR cutoff
	for rflag to avoid flagging data due to source structure, and
	with an additional series of tfcrop executions to make up for
	the higher SNR cutoff in rflag
	- VLASS specific modes include 'bpd-vlass', 'allcals-vlass', and
	'target-vlass'
	which calculate thresholds to use per spw/field/scan (action='calculate', then,
	per baseband/field/scan, replace all spw thresholds above the median with the median,
	before re-running rflag with the new thresholds. This has the effect of
	lowering the thresholds for spws with RFI to be closer to the RFI-free thresholds, and catches more of the RFI.
	 Mode 'vlass-imaging' is similar to 'target-vlass', except that it executes on the split off target
	data, intent='*TARGET', datacolumn='data' and uses a timedevscale of
	4.0.
growflags	Grow flogs in time at the and of the following sheel-flogmeder
	Grow flags in time at the end of the following checkflagmodes: default=True, for 'bpd-vla', 'allcals-vla', 'bpd', and 'allcals' default=False, for '' and 'semi'
overwrite_modelcol	Always write the model column, even if it already exists

Table 3 – continued from previous page	Table	3 – continued	from	previous	page
--	-------	---------------	------	----------	------

5.3.3 Examples

1. Run RFLAG with associated heuristics in the VLA CASA pipeline.

>>> hifv_checkflag()

5.4 hifv_circfeedpolcal

5.4.1 Task description

Perform polarization calibration for VLA circular feeds.

Only validated for VLA sky survey data in S-band continuum mode with 3C138 or 3C286 as polarization angle. Requires that all polarization intents are properly set during observation.

Output:

results - The results object for the pipeline task is returned.

5.4.2 Parameter List

parameter name	description
vis	List of input visibility data
Dterm_solint	D-terms spectral averaging. Example: refantignore='ea02,ea03'
refantignore	Help appears with Dterm_solint parameter
leakage_poltype	poltype to use in first polcal execution - blank string means use default heuristics
mbdkcross	Run gaincal KCROSS grouped by baseband
clipminmax	Acceptable range for leakage amplitudes, values outside will be flagged.

5.4.3 Examples

1. Basic circfeedpolcal task

>>> hifv_circfeedpolcal()

5.5 hifv_exportdata

5.5.1 Task description

The hifv_exportdata task for the VLA CASA pipeline exports the data defined in the pipeline context and exports it to the data products directory, converting and or packing it as necessary.

The current version of the task exports the following products

- an XML file containing the pipeline processing request
- a tar file per ASDM / MS containing the final flags version OR the MS if tarms is False
- a text file per ASDM / MS containing the final calibration apply list
- a FITS image for each selected calibrator source image
- a FITS image for each selected science target source image
- a tar file per session containing the caltables for that session
- a tar file containing the file web log
- a text file containing the final list of CASA commands

Output:

results – The results object for the pipeline task is returned.

5.5.2 Parameter List

vis List of visibility data files for which flagging and calibration information will be exported. Defaults to the list maintained in the pipeline context.	parameter name	description
example: vis=['X227.ms', 'X228.ms']	vis	will be exported. Defaults to the list maintained in the pipeline context.

parameter name	description
session	List of sessions one per visibility file. Currently defaults to a single virtual session containing all the visibility files in vis. In the future, this will default to the set of observing sessions defined in the context. example: session=['session1', 'session2']
imaging_products_only	Export science target imaging products only
exportmses	Export the final MeasurementSets instead of the final flags, calibration tables, and calibration instructions.
tarms	Tar final MeasurementSets
exportcalprods	Export flags and caltables in addition to MeasurementSets. this parameter is only valid when exportmses = True.
pprfile	Name of the pipeline processing request to be exported. Defaults to a file matching the template 'PPR_*.xml'. example: pprfile=['PPR_GRB021004.xml']
calintents	List of calibrator image types to be exported. Defaults to all standard calibrator intents, 'BANDPASS', 'PHASE', 'FLUX'. example: 'PHASE'
calimages	List of calibrator images to be exported. Defaults to all calibrator images recorded in the pipeline context. example: calimages=['3C454.3.bandpass', '3C279.phase']
targetimages	List of science target images to be exported. Defaults to all science target images recorded in the pipeline context. example: targetimages=['NGC3256.band3', 'NGC3256.band6']
products_dir	Name of the data products subdirectory. Defaults to './' example: '/products'
gainmap	The value of gainmap parameter in hifv_restoredata task put in casa_piperestorescript.py

	Table	5 – c	ontinued	from	previous	page
--	-------	-------	----------	------	----------	------

5.5.3 Examples

1. Export the pipeline results for a single session to the data products directory

```
>>> !mkdir ../products
>>> hifv exportdata (products dir='../products')
```

2. Export the pipeline results to the data products directory specify that only the gain calibrator images be saved.

```
>>> !mkdir ../products
>>> hifv exportdata (products dir='../products', calintents='*PHASE*')
```

5.6 hifv_exportvlassdata

5.6.1 Task description

Export Image data from QL, SE, and Coarse Cube modes of VLASS Survey Output: results – The results object for the pipeline task is returned.

5.6.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hifv_importdata task.

5.6.3 Examples

1. Basic exportvlassdata task

```
>>> hifv exportvlassdata()
```

5.7 hifv_finalcals

5.7.1 Task description

Compute final gain calibration tables

Output:

results - The results object for the pipeline task is returned.

5.7.2 Parameter List

parameter name	description
weakbp	Activate weak bandpass heuristics
refantignore	String list of antennas to ignore

5.7.3 Examples

1. Create the final calibration tables to be applied to the data in the VLA CASA pipeline.

>>> hifv finalcals()

5.8 hifv_fixpointing

5.8.1 Task description

The hifv_fixpointing task

Output:

results - The results object for the pipeline task is returned.

5.8.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hifv_importdata task.

5.8.3 Examples

()

5.9 hifv_flagcal

5.9.1 Task description

Flagcal task

Output:

results - The results object for the pipeline task is returned.

5.9.2 Parameter List

parameter name	description
vis	List of input visibility data
caltable	String name of the caltable
clipminmax	Range to use for clipping

5.9.3 Examples

1.	Flag	existing	caltabl	le
•••		erround,	e un curo	

>>> hifv flagcal()

5.10 hifv_flagdata

5.10.1 Task description

The hifv_flagdata task performs basic flagging operations on a list of MeasurementSets including:

- autocorrelation data flagging
- shadowed antenna data flagging
- scan based flagging
- edge channel flagging
- baseband edge flagging
- applying online flags
- applying a flagging template
- quack, shadow, and basebands
- Antenna not-on-source (ANOS)

Output:

results - The results object for the pipeline task is returned.

5.10.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hifv_importdata task.
autocorr	Flag autocorrelation data
shadow	Flag shadowed antennas
scan	Flag specified scans
scannumber	A string containing a comma delimited list of scans to be flagged. example: '3,5,6'
quack	Quack scans
clip	Clip mode
baseband	Flag 20MHz of each edge of basebands
intents	A string containing a comma delimited list of intents against which the scans to be flagged are matched. example: '* <i>BANDPASS</i> *'
edgespw	Fraction of the baseline correlator TDM edge channels to be flagged.
fracspw	Fraction of baseline correlator edge channels to be flagged
online	Apply the online flags
	continues on next page

parameter name	description
fileonline	File containing the online flags. These are computed by the h_init or hif_importdata data tasks. If the online flags files are undefined a name of the form 'msname.flagonline.txt' is assumed.
template	Apply a flagging template
filetemplate	The name of a text file that contains the flagging template for RFI, birdies, telluric lines, etc. If the template flags files is undefined a name of the form 'msname.flagtemplate.txt' is assumed.
hm_tbuff	The time buffer computation heuristic
tbuff	List of time buffers (sec) to pad timerange in flag commands
flagbackup	Backup pre-existing flags before applying new ones.

Table 10 - continued from previous page

5.10.3 Examples

1. Do basic flagging on a MeasurementSet

>>> hifv_flagdata()

2. Do basic flagging on a MeasurementSet as well as flag pointing and atmosphere data

```
>>> hifv_flagdata(scan=True intent='*BANDPASS*')
```

5.11 hifv_flagtargetsdata

5.11.1 Task description

Apply a flagtemplate to target data prior to running imaging pipeline tasks

Output:

results - The results object for the pipeline task is returned.

5.11.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets defined in the pipeline context.
template	Apply flagging templates.
filetemplate	The name of a text file that contains the flagging template for issues with the science target data etc. If the template flags files is undefined a name of the form 'msname_flagtargetstemplate.txt' is assumed.
flagbackup	Back up any pre-existing flags.

5.11.3 Examples

1. Basic flagtargetsdata task

```
>>> hifv_flagtargetsdata()
```

5.12 hifv_fluxboot

5.12.1 Task description

Determine flux density bootstrapping for gain calibrators relative to flux calibrator.

Output:

results - The results object for the pipeline task is returned.

5.12.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hifv_importdata task.
caltable	String name of the flagged caltable
	continues on next page

parameter name	description
fitorder	
	Polynomial order of the spectral fitting for valid flux densities with multiple spws. The default value of -1 means that the heuristics determine the fit order based on
	fractional bandwidth and receiver bands present in the observation.
	An override value of 1,2,3 or 4 may be specified by the user.
	Spectral index (1) and, if applicable, curvature (2) are reported in the weblog.
	If no determination can be made by the heuristics, a fitorder of 1 will be used.
refantignore	String list of antennas to ignore Example: refantignore='ea02,ea03'

Table 12 – continued from previous p	age
--------------------------------------	-----

5.12.3 Examples

1. VLA CASA pipeline flux density bootstrapping.

>>> hifv_fluxboot()

5.13 hifv_hanning

5.13.1 Task description

The hifv_hanning task will hanning smooth a VLA dataset

Output:

results – The results object for the pipeline task is returned.

5.13.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hifv_importdata task.

5.13.3 Examples

1. Run the task to execute hanning smoothing on a VLA CASA pipeline loaded MeasurementSet.

>>> hifv_hanning()

5.14 hifv_importdata

5.14.1 Task description

The hifv_importdata task loads the specified visibility data into the pipeline context unpacking and / or converting it as necessary.

Output:

results - The results object for the pipeline task is returned.

5.14.2 Parameter List

parameter name	description
vis	List of visibility data files. These may be ASDMs, tar files of ASDMs, MSes, or tar files of MSes, If ASDM files are specified, they will be converted to MS format. example: vis=['X227.ms', 'asdms.tar.gz']
session	List of sessions to which the visibility files belong. Defaults to a single session containing all the visibility files, otherwise a session must be assigned to each vis file. example: session=['Session_1', 'Sessions_2']
asis	Creates verbatim copies of the ASDM tables in the output MS. The value given to this option must be a list of table names separated by space characters. examples: 'Receiver CalAtmosphere' 'Receiver', ''
overwrite	Overwrite existing files on import.
посору	When importing an MS, disable copying of the MS to the working directory.

parameter name	description
createmms	Create a multi-MeasurementSet ('true') ready for parallel processing, or a standard MeasurementSet ('false'). The default setting ('automatic') creates an MMS if running in a cluster environment.
ocorr_mode	Read in cross- and auto-correlation data(ca), cross- correlation data only (co), or autocorrelation data only (ao).
datacolumns	 Dictionary defining the data types of existing columns. The format is: {'data': 'data type 1'} or {'data': 'data type 1', 'corrected': 'data type 2'} For ASDMs the data type can only be RAW and one can only specify it for the data column. For MSes one can define two different data types for the DATA and CORRECTED_DATA columns and they can be any of the known data types (RAW, REGCAL_CONTLINE_ALL, REGCAL_CONTLINE_SCIENCE, SELFCAL_CONTLINE_SCIENCE, BASELINED, ATMCORR). The intent selection strings _ALL or _SCIENCE can be skipped. In that case the task determines this automatically by inspecting the existing intents in the dataset. Usually, a single datacolumns dictionary is used for all datasets. If necessary, one can define a list of dictionaries, one for each EB, with different setups per EB. If no types are specified, {'data':'raw', corrected':'regcal_contline'}
	{'data':'raw','corrected':'regcal_contline'} or {'data':'raw'} will be assumed, depending on whether the corrected column exists or not.

Table	14 - continued from	previous page
TUDIC		provious page

5.14.3 Examples

1. Load an ASDM list in the ../rawdata subdirectory into the context.

>>> hifv_importdata (vis=['../rawdata/uid___A002_X30a93d_X43e', '../rawdata/uid_A002_ $\Rightarrow x30a93d_X44e'$])

2. Load an MS in the current directory into the context.

```
>>> hifv_importdata (vis=[uid___A002_X30a93d_X43e.ms])
```

3. Load a tarred ASDM in ../rawdata into the context.

>>> hifv_importdata (vis=['../rawdata/uid___A002_X30a93d_X43e.tar.gz'])

4. Check the hifv_importdata inputs, then import the data

```
>>> myvislist = ['uid_A002_X30a93d_X43e.ms', 'uid_A002_x30a93d_X44e.ms'] \\>>> hifv_importdata(vis=myvislist)
```

5. Run with explicit setting of data column types:

```
>>> hifv_importdata(vis=['uid___A002_X30a93d_X43e_targets.ms'], datacolumns={'data': 'regcal_ octrine'}) 
>>> hifv_importdata(vis=['uid___A002_X30a93d_X43e_targets_line.ms'], datacolumns={'data': of 'regcal_ line', 'corrected': 'selfcal_ line'})
```

5.15 hifv_pbcor

5.15.1 Task description

Apply primary beam correction to VLA and VLASS images

Output:

results - The results object for the pipeline task is returned.

5.15.2 Parameter List

parameter name	description
vis	List of input visibility data

5.15.3 Examples

1. Basic pbcor task

>>> hifv pbcor()

5.16 hifv_plotsummary

5.16.1 Task description

Create pipeline summary plots

Output:

results - The results object for the pipeline task is returned.

5.16.2 Parameter List

parameter name	description
vis	
	List of input visibility data

5.16.3 Examples

1. Execute the pipeline plotting task.

>>> hifv_plotsummary()

5.17 hifv_priorcals

5.17.1 Task description

Runs gaincurves, opacities, requantizer gains, antenna position corrections, tec_maps, switched power.

Output:

results - The results object for the pipeline task is returned.

5.17.2 Parameter List

parameter name	description
vis	List of visibility data files. These may be ASDMs, tar files of ASDMs, MSes, or tar files of MSes, If ASDM files are specified, they will be converted to MS format. example: vis=['X227.ms', 'asdms.tar.gz']
show_tec_maps	Plot tec maps
apply_tec_correction	Apply tec correction
swpow_spw	Spectral-window(s) for plotting: "" ==>all, spw="6,14"

5.17.3 Examples

1. Run gaincurves, opacities, requantizer gains and antenna position corrections.

```
>>> hifv priorcals()
```

5.18 hifv_restoredata

5.18.1 Task description

The hifv_restoredata restores flagged and calibrated data from archived ASDMs and pipeline flagging and calibration data products. Pending archive retrieval support hifv_restoredata assumes that the required products are available in the rawdata_dir in the format produced by the hifv_export data task.

hifv_restoredata assumes that the following entities are available in the raw data directory

- the ASDMs to be restored
- for each ASDM in the input list:
 - a compressed tar file of the final flagversions file, e.g. uid___A002_X30a93d_X43e.ms.flagversions.tar.gz
 - a text file containing the applycal instructions, e.g. uid___A002_X30a93d_X43e.ms.calapply.txt
 - a compressed tar file containing the caltables for the parent session, e.g. uid__A001_X74_X29.session_3.caltables.tar.gz

hifv_restoredata performs the following operations

- imports the ASDM(s))
- removes the default MS.flagversions directory created by the filler
- · restores the final MS.flagversions directory stored by the pipeline

- restores the final set of pipeline flags to the MS
- restores the final calibration state of the MS
- restores the final calibration tables for each MS
- applies the calibration tables to each MS

Output:

results - The results object for the pipeline task is returned.

5.18.2 Parameter List

parameter name	description
vis	List of visibility data files. These may be ASDMs, tar files of ASDMs, MSes, or tar files of MSes, If ASDM files are specified, they will be converted to MS format. example: vis=['X227.ms', 'asdms.tar.gz']
session	List of sessions one per visibility file. Example: session=['session_3']
products_dir	Name of the data products directory to copy calibration products from. The parameter is effective only when copytoraw = True When copytoraw = False, calibration products in rawdata_dir will be used. example: products_dir='myproductspath'
copytoraw	Copy calibration and flagging tables from products_dir to rawdata_dir directory. Example: copytoraw=False.
rawdata_dir	The rawdata directory. Example: rawdata_dir='myrawdatapath'
lazy	Use the lazy filler option.
bdfflags	Set the BDF flags.
ocorr_mode	Correlation import mode
gainmap	If True, map gainfields to a particular list of scans when applying calibration tables.
	continues on next page

Table To continued non previous page	Table	18 – continued	from	previous page
--------------------------------------	-------	----------------	------	---------------

parameter name	description
asis	List of tables to import asis.

5.18.3 Examples

1. Restore the pipeline results for a single ASDM in a single session

```
>>> hifv\_restoredata~(vis=['myVLAsdm'],~session=['session\_1'],~ocorr\_mode='ca')
```

5.19 hifv_restorepims

5.19.1 Task description

Restore VLASS SE per-image measurement set data, resetting flagging, weights, and applying self-calibration.

Output:

results - The results object for the pipeline task is returned.

5.19.2 Parameter List

parameter name	description
vis	List of input visibility data
reimaging_resources	file path of reimaging_resources.tgz from the SE imaging product

5.19.3 Examples

1.	Basic	restorepims	task
----	-------	-------------	------

$ >>> hifv_1$	restorepims()
---------------	--------------	---

5.20 hifv_selfcal

5.20.1 Task description

Perform phase-only self-calibration, per scan row, on VLASS SE images Output: results – The results object for the pipeline task is returned.

5.20.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hifv_importdata task.
refantignore	String list of antennas to ignore
combine	 Data axes which to combine for solve Options: ','obs','scan','spw',field', or any comma-separated combination in a single string Example: combine='scan,spw' - Extend solutions over scan boundaries (up to the solint), and combine spws for solving. In selfcalmode='VLASS-SE' use the default value.
selfcalmode	Heuristics mode selection. Known modes are 'VLASS' and 'VLASS-SE'. Default value is 'VLASS'.
refantmode	Reference antenna mode
overwrite_modelcol	Always write the model column, even if it already exists

5.20.3 Examples

1. Basic selfcal task

 $>>> hifv_selfcal()$

2. VLASS-SE selfcal usage

>>> hifv_selfcal(selfcalmode='VLASS-SE', combine='field,spw')

5.21 hifv_semiFinalBPdcals

5.21.1 Task description

Runs a second delay and bandpass calibration and applies to calibrators to setup for RFI flagging

Output:

results - The results object for the pipeline task is returned.

5.21.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hifv_importdata task.
weakbp	Activate weak bandpass heuristics
refantignore	String list of antennas to ignore

5.21.3 Examples

1. Heuristic flagging

 $>>> hifv_semiFinalBPdcals()$

5.22 hifv_solint

5.22.1 Task description

The hifv_solint task determines different solution intervals. Note that the short solint value is switched to 'int' when the minimum solution interval corresponds to one integration.

Output:

results - The results object for the pipeline task is returned.

5.22.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hifv_importdata task.
limit_short_solint	Keyword argument in units of seconds to limit the short solution interval. Can be a string or float numerical value in units of seconds of '0.45' or 0.45. Can be set to a string value of 'int'.
refantignore	String list of antennas to ignore Example: refantignore='ea02,ea03'

5.22.3 Examples

1. Determines different solution intervals:

>>> hifv solint()

5.23 hifv_statwt

5.23.1 Task description

Compute statistical weights and write them to measurement set

Output:

results - The results object for the pipeline task is returned.

5.23.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hifv_importdata task.
datacolumn	Data column used to compute weights. Supported values are "data", "corrected", "residual", and "residual_data" (case insensitive, minimum match supported).
overwrite_modelcol	Always write the model column, even if it already exists
statwtmode	Sets the weighting parameters for general VLA ('VLA') or VLASS Single Epoch ('VLASS-SE') use case. Note that the 'VLASS-SE' mode is meant to be used with datacolumn='residual_data'. Default is 'VLA'.

5.23.3 Examples

1. Statistical weighting of the visibilities:

>>> hifv_statwt()

2. Statistical weighting of the visibilities in the Very Large Array Sky Survey Single Epoch use case:

 $>>> hifv_statwt(mode='vlass-se', datacolumn='residual_data')$

5.24 hifv_syspower

5.24.1 Task description

Determine amount of gain compression affecting VLA data below Ku-band

Output:

results – The results object for the pipeline task is returned.

5.24.2 Parameter List

parameter name	description
vis	List of input visibility data
clip_sp_template	Acceptable range for Pdiff data; data are clipped outside this range and flagged
antexclude	 dictionary in the format of: {'L': {'ea02': {'usemedian': True}, 'ea03': {'usemedian': False}}, 'X': {'ea02': {'usemedian': True}, 'ea03': {'usemedian': False}}, 'S': {'ea12': {'usemedian': False}, 'ea22': {'usemedian': False}}} If antexclude is specified with 'usemedian': False, the template values are replaced with 1.0. If 'usemedian': True, the template values are replaced with the median of the good antennas.
apply	Apply task results to RQ table
do_not_apply	csv string of band names to not apply. Example: 'L,X,S'

5.24.3 Examples

1. Basic syspower task

>>> hifv_syspower()

5.25 hifv_testBPdcals

5.25.1 Task description

Runs initial delay and bandpass calibration to setup for RFI flagging

Output:

results - The results object for the pipeline task is returned.

5.25.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hifv_importdata task.
weakbp	Activate weak bandpass heuristics
refantignore	String list of antennas to ignore Example: refantignore='ea02,ea03'
doflagundernspwlimit	If the number of bad spws is greater than zero, and the keyword is True, then spws are flagged individually.

5.25.3 Examples

1. Initial delay calibration to set up heuristic flagging.

```
>>> hifv_testBPdcals()
```

5.26 hifv_vlasetjy

5.26.1 Task description

The hifv_vlasetjy task does an initial run of setjy on the vis

Output:

results - The results object for the pipeline task is returned.

standard - Flux density standard default: "

5.26.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hifv_importdata task.
field	List of field names or ids.
	continues on next page

parameter name	description
intent	Observing intent of flux calibrators.
spw	List of spectral window ids.
model	File location for field model.
reffile	Path to file with fluxes for non-solar system calibrators.
fluxdensity	Specified flux density [I,Q,U,V]; -1 will lookup values
spix	Spectral index of fluxdensity. Can be set when fluxdensity is not -1
reffreq	Reference frequency for spix. Can be set when fluxdensity is not -1
scalebychan	Scale the flux density on a per channel basis or else on a per spw basis
standard	Flux density standard

Table 26 - continued from previous page

5.26.3 Examples

1. Initial run of setjy:

>>> hifv_vlasetjy()

5.27 hifv_vlassmasking

5.27.1 Task description

Create clean masks for VLASS SE images

Output:

results - The results object for the pipeline task is returned.

5.27.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets specified in the h_init or hifv_importdata task.
vlass_ql_database	vlass_ql_database - usage in Socorro: /home/vlass/packages/VLASS1Q.fits
maskingmode	maskingmode options are vlass-se-tier-1 or vlass-se-tier-2
catalog_search_size	catalog_search_size in units of degrees

5.27.3 Examples

1. Basic vlassmasking task

 $>>> hifv_vlassmasking()$

CHAPTER

SIX

SINGLE DISH

12 tasks available.

task name	description
hsd_applycal	Apply the calibration(s) to the data
hsd_atmcor	Apply offline ATM correction to the data.
hsd_baseline	Detect and validate spectral lines, subtract baseline by masking detected
	lines
hsd_blflag	Flag spectra based on predefined criteria of single dish pipeline
hsd_exportdata	Prepare single dish data for export
hsd_flagdata	Do basic flagging of a list of MeasurementSets
hsd_imaging	Generate single dish images
hsd_importdata	Imports data into the single dish pipeline
hsd_k2jycal	Derive Kelvin to Jy calibration tables
hsd_restoredata	Restore flagged and calibration single dish data from a pipeline run
hsd_skycal	Calibrate data
hsd_tsysflag	Flag deviant system temperature measurements

6.1 hsd_applycal

6.1.1 Task description

Apply the calibration to the data.

hsd_applycal applies the precomputed calibration tables stored in the pipeline context to the set of visibility files using predetermined field and spectral window maps and default values for the interpolation schemes.

Users can interact with the pipeline calibration state using the tasks h_export_calstate and h_import_calstate.

Output:

results - The results object for the pipeline task is returned

6.1.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets in the pipeline context. example: ['X227.ms']
field	A string containing the list of field names or field ids to which the calibration will be applied. Defaults to all fields in the pipeline context. example: '3C279', '3C279, M82'
intent	A string containing the list of intents against which the selected fields will be matched. Defaults to all supported intents in the pipeline context. example: ' <i>*TARGET*</i> '
spw	The list of spectral windows and channels to which the calibration will be applied. Defaults to all science windows in the pipeline context. example: '17', '11, 15'
antenna	The selection of antennas to which the calibration will be applied. Defaults to all antennas. Not currently supported.
applymode	Calibration apply mode 'calflag': calibrate data and apply flags from solutions 'calflagstrict': same as above except flag spws for which calibration is unavailable in one or more tables (instead of allowing them to pass uncalibrated and unflagged) 'trial': report on flags from solutions, dataset entirely unchanged 'flagonly': apply flags from solutions only, data not calibrated 'flagonlytrict': same as above except flag spws for which calibration is unavailable in one or more tables 'calonly': calibrate data only, flags from solutions NOT applied
calwt	Calibrate the weights as well as the data.
flagbackup	Backup the flags before the apply.

description
Execute using CASA HPC functionality, if available. options: 'automatic', 'true', 'false', True, False default: None (equivalent to 'automatic')

Table 1 - continued from previous page

6.1.3 Examples

1. Apply the calibration to the target data

```
>> hsd applycal (intent='TARGET')
```

2. Specify fields and spectral windows

```
>>> hsd applycal(field='3C279, M82', spw='17', intent='TARGET')
```

6.2 hsd_atmcor

6.2.1 Task description

The hsd_atmcor task provides the capability of offline correction of residual atmospheric features in the calibrated single-dish spectra originated from incomplete calibration mainly due to a difference of elevation angles between ON_SOURCE and OFF_SOURCE measurements.

Optimal atmospheric model is automatically determined by default (atmtype = 'auto'). You may specify desired atmospheric model by giving either single integer (apply to all EBs) or a list of integers (models per EB) to atmtype parameter. Please see parameter description for the meanings of integer values.

6.2.2 Parameter List

parameter name	description
atmtype	Type of atmospheric transmission model represented as an integer. Available options are as follows. Integer values can be given as either integer or string, i.e. both 1 and '1' are acceptable. 'auto': perform heuristics to choose best model (default) 1: tropical 2: mid latitude summer 3: mid latitude winter 4: subarctic summer 5: subarctic winter If list of integer is given, it also performs heuristics using the provided values instead of default, [1, 2, 3, 4], which is used when 'auto' is provided. List input should not contain 'auto'. Default: 'auto'
dtem_dh	Temperature gradient [K/km], e.g5.6. ('"" = Tool default) The value is directly passed to initialization method for ATM model. Float and string types are acceptable. Float value is interpreted as the value in K/km. String value should be the numeric value with unit such as '-5.6K/km'. When list of values are given, it will trigger heuristics to choose best model from the provided value. Default: '' (tool default, -5.6K/km, is used)
h0	Scale height for water [km], e.g. 2.0. ('"' = Tool default) The value is directly passed to initialization method for ATM model. Float and string types are acceptable. Float value is interpreted as the value in kilometer. String value should be the numeric value with unit compatible with length, such as '2km' or '2000m'. When list of values are given, it will trigger heuristics to choose best model from the provided value. Default: '' (tool default, 2.0km, is used)
infiles	ASDM or MS files to be processed. This parameter behaves as data selection parameter. The name specified by infiles must be registered to context before you run hsd_atmcor.
antenna	Data selection by antenna names or ids. example: 'PM03,PM04' '' (all antennas)

parameter name	description
field	Data selection by field names or ids. example: '*Sgr*,M100' '' (all fields)
spw	Data selection by spw ids. example: '3,4' (spw 3 and 4) '' (all spws)
pol	Data selection by polarizations. example: 'XX,YY' (correlation XX and YY) '' (all polarizations)

Table 2 - continued from previous page

6.2.3 Examples

1. Basic usage

 $>> hsd_atmcor()$

2. Specify atmospheric model and data selection

 $>>> hsd_atmcor(atmtype=1, antenna='PM03, PM04', field='*Sgr*, M100')$

3. Specify atmospheric model per EB (atmtype 1 for 1st EB, 2 for 2nd EB)

 $>> hsd_atmcor(atmtype=[1, 2])$

6.3 hsd_baseline

6.3.1 Task description

The hsd_baseline task subtracts baseline from calibrated spectra. By default, the task tries to find spectral line feature using line detection and validation algorithms. Then, the task puts a mask on detected lines and perform baseline subtraction. The user is able to turn off automatic line masking by setting linewindow parameter, which specifies pre-defined line window.

Fitting order is automatically determined by default. It can be disabled by specifying fitorder as non-negative value. In this case, the value specified by fitorder will be used.

WARNING Currently, hsd_baseline overwrites the result obtained by the previous run. Due to this behavior, users need to be careful about an order of the task execution when they run hsd_baseline multiple times with different data selection. Suppose there are two spectral windows (0 and 1) and hsd_baseline is executed separately for each spw as below,

```
>>> hsd_baseline(spw='0')
>>> hsd_baseline(spw='1')
>>> hsd_blflag()
>>> hsd_imaging()
```

Since the second run of hsd_baseline overwrites the result for spw 0 with the data before baseline subtraction, this will not produce correct result for spw 0. Proper sequence for this use case is to process each spw to the imaging stage separately, which looks like as follows:

>>> hsd_baseline(spw='0')
>>> hsd_blflag(spw='0')
>>> hsd_imaging(spw='0'))
>>> hsd_baseline(spw='1')
>>> hsd_blflag(spw='1')
>>> hsd_imaging(spw='1')

Output: results – The results object for the pipeline task is returned.

6.3.2 Parameter List

parameter name	description
fitfunc	fitting function for baseline subtraction. You can only choose cubic spline ('spline' or 'cspline')
fitorder	Fitting order for polynomial. For cubic spline, it is used to determine how much the spectrum is segmented into. Default (-1) is to determine the order automatically.
switchpoly	If True, switch to 1st or 2nd order polynomial fit when large mask exists at edge regardless of whatever fitfunc or fitorder are specified. Condition for switching is as follows: if nmask > nchan/2 => 1st order polynomial else if nmask > nchan/4 => 2nd order polynomial else => use fitfunc and fitorder where nmask is a number of channels for mask at edge while nchan is a number of channels of entire spectral window.

parameter name	description
linewindow	
	Pre-defined line window. If this is set, specified line windows are used as a line mask for baseline subtraction
	instead to determine masks based on line detection and
	validation stage. Several types of format are acceptable.
	One is channel-based window,
	[min_chan, max_chan]
	where min_chan and max_chan should be an integer. For
	multiple windows, nested list is also acceptable,
	[[min_chan0, max_chan0], [min_chan1, max_chan1],]
	Another way is frequency-based window,
	[min_freq, max_freq]
	where min_freq and max_freq should be either a float or
	a string. If float value is given, it is interpreted as
	a frequency in Hz. String should be a quantity consisting
	of "value" and "unit",
	e.g., '100GHz'. Multiple windows are also supported.
	[[min_freq0, max_freq0], [min_freq1, max_freq1],]
	Note that the specified frequencies are assumed to be
	the value in LSRK frame. Note also that there is a
	limitation when multiple MSes are processed.
	If native frequency frame of the data is not LSRK
	(e.g. TOPO), frequencies need to be converted to that
	frame. As a result, corresponding channel range may vary
	between MSes. However, current implementation is not
	able to handle such case. Frequencies are converted to
	desired frame using representative MS (time, position,
	direction).
	In the above cases, specified line windows are applied
	to all science spws. In case when line windows vary with
	spw, line windows can be specified by a dictionary whose
	key is spw id while value is line window.
	For example, the following dictionary gives different
	line windows to spws 17 and 19. Other spws, if available,
	will have an empty line window.
	{17: [[100, 200], [1200, 1400]], 19: ['112115MHz', '112116MHz']}
	Furthermore, linewindow accepts MS selection string.
	The following string gives [[100,200],[1200,1400]] for

Table 3 – continued from previous page	bade
--	------

Table 3 – continued from previous page		
parameter name	description	
	 spw 17 while [1000,1500] for spw 21. "17:100~200;1200~1400,21:1000~1500" The string also accepts frequency with units. Note, however, that frequency reference frame in this case is not fixed to LSRK. Instead, the frame will be taken from the MS (typically TOPO for ALMA). Thus, the following two frequency-based line windows result different channel selections. {19: ['112115MHz', '112116MHz']} # frequency frame is LSRK "19:11215MHz~11216MHz" # frequency frame is taken from the data # (TOPO for ALMA) None is allowed as a value of dictionary input to indicate that no line detection/validation is required even if manually specified line window does not exist. When None is given as a value and if linewindowmode is 'replace', line detection/validation is not performed for the corresponding spw. For example, suppose the following parameters are given for the data with four science spws, 17, 19, 21, and 23. linewindowmode='replace' The task will use given line window for 17 and 19 while the task performs line detection/validation for spw 23 because no line window is set. On the other hand, line detection/validation is skipped for spw 21 due to the effect of None. example: [100,200] (channel), [115e9, 115.1e9] (frequency in Hz) ['115GHz', '115.1GHz'], see above for more examples 	
linewindowmode	Merge or replace given manual line window with line detection/validation result. If 'replace' is given, line detection and validation will not be performed. On the other hand, when 'merge' is specified, line detection/validation will be performed and manually specified line windows are added to the result. Note that this has no effect when linewindow for target spw is an empty list. In that case, line detection/validation will be performed regardless of the value of linewindowmode. In case if no linewindow nor line detection/validation are necessary, you should set linewindowmode to 'replace' and specify None as a value of the linewindow dictionary for the spw to apply. See parameter description of linewindow for detail.	

parameter name	description
edge	Number of edge channels to be dropped from baseline subtraction. The value must be a list with length of 2, whose values specify left and right edge channels, respectively. example: [10,10]
broadline	Try to detect broad component of spectral line if True.
clusteringalgorithm	Selection of the algorithm used in the clustering analysis to check the validity of detected line features. 'kmean' algorithm and hierarchical clustering algorithm 'hierarchy', and their combination ('both') are so far implemented.
deviationmask	Apply deviation mask in addition to masks determined by the automatic line detection.
parallel	Execute using CASA HPC functionality, if available. options: 'automatic', 'true', 'false', True, False default: None (equivalent to 'automatic')
infiles	List of data files. These must be a name of MeasurementSets that are registered to context via hsd_importdata task. example: vis=['X227.ms', 'X228.ms']
field	Data selection by field. example: '1' (select by FIELD_ID) 'M100*' (select by field name) '' (all fields)
antenna	Data selection by antenna. example: '1' (select by ANTENNA_ID) 'PM03' (select by antenna name) '' (all antennas)
spw	Data selection by spw. example: '3,4' (generate caltable for spw 3 and 4) ['0','2'] (spw 0 for first data, 2 for second) '' (all spws)
	continues on next page

parameter name	ame description	
pol	Data selection by polarizations. example: '0' (generate caltable for pol 0) ['0~1','0'] (pol 0 and 1 for first data, only 0 for second) '' (all polarizations)	

Table 3 - continued from previous page

6.3.3 Examples

1. Basic usage with automatic line detection and validation

```
>>> hsd baseline(antenna='PM03', spw='17,19')
```

- 2. Using pre-defined line windows without automatic line detection and edge channels
- >>> hsd_baseline(linewindow=[[100, 200], [1200, 1400]], linewindowmode='replace', edge=[10, 10])

3. Using per spw pre-defined line windows with automatic line detection

>>> hsd_baseline(linewindow={19: [[390, 550]], 23: [[100, 200], [1200, 1400]]}, linewindowmode='merge')

6.4 hsd_blflag

6.4.1 Task description

Data are flagged based on several flagging rules. Available rules are: expected rms, calculated rms, and running mean of both pre-fit and post-fit spectra. Tsys flagging is also available.

In addition, the heuristics script creates many plots for each stage. Those plots are included in the weblog.

Output:

results - The results object for the pipeline task is returned.

6.4.2 Parameter List

parameter name	description
iteration	Number of iterations to perform sigma clipping to calculate threshold value of flagging.

parameter name	description
edge	Number of channels to be dropped from the edge. The value must be a list of integer with length of one or two. If list length is one, same number will be applied both side of the band. example: [10,20], [10]
flag_tsys	Activate (True) or deactivate (False) Tsys flag.
tsys_thresh	Threshold value for Tsys flag.
flag_prfre	Activate (True) or deactivate (False) flag by expected rms of pre-fit spectra.
prfre_thresh	Threshold value for flag by expected rms of pre-fit spectra.
flag_pofre	Activate (True) or deactivate (False) flag by expected rms of post-fit spectra.
pofre_thresh	Threshold value for flag by expected rms of post-fit spectra.
flag_prfr	Activate (True) or deactivate (False) flag by rms of pre-fit spectra.
prfr_thresh	Threshold value for flag by rms of pre-fit spectra.
flag_pofr	Activate (True) or deactivate (False) flag by rms of post-fit spectra.
pofr_thresh	Threshold value for flag by rms of post-fit spectra.
flag_prfrm	Activate (True) or deactivate (False) flag by running mean of pre-fit spectra.
prfrm_thresh	Threshold value for flag by running mean of pre-fit spectra.
prfrm_nmean	Number of channels for running mean of pre-fit spectra.
	continues on next page

Table 4 – continued from previous page

parameter name	description
flag_pofrm	Activate (True) or deactivate (False) flag by running mean of post-fit spectra.
pofrm_thresh	Threshold value for flag by running mean of post-fit spectra.
pofrm_nmean	Number of channels for running mean of post-fit spectra.
plotflag	True to plot result of data flagging.
parallel	Execute using CASA HPC functionality, if available. options: 'automatic', 'true', 'false', True, False default: None (equivalent to 'automatic')
infiles	ASDM or MS files to be processed. This parameter behaves as data selection parameter. The name specified by infiles must be registered to context before you run hsd_blflag.
antenna	Data selection by antenna names or ids. example: 'PM03,PM04' '' (all antennas)
field	Data selection by field names or ids. example: '* <i>Sgr</i> *, <i>M100</i> ' '' (all fields)
spw	Data selection by spw ids. example: '3,4' (spw 3 and 4) '' (all spws)
pol	Data selection by polarizations. example: 'XX,YY' (correlation XX and YY) '' (all polarizations)

Table 4 – continued from previous page

6.4.3 Examples

1. flagging with all rules

```
>>> hsd_blflag()
```

6.5 hsd_exportdata

6.5.1 Task description

The hsd_exportdata task exports the data defined in the pipeline context and exports it to the data products directory, converting and or packing it as necessary.

The current version of the task exports the following products

- a FITS image for each selected science target source image
- a tar file per ASDM containing the final flags version and blparam
- a tar file containing the file web log

Output:

results - The results object for the pipeline task is returned.

6.5.2 Parameter List

parameter name	description
pprfile	Name of the pipeline processing request to be exported. Defaults to a file matching the template 'PPR_*.xml'. example: pprfile=['PPR_GRB021004.xml']
targetimages	List of science target images to be exported. Defaults to all science target images recorded in the pipeline context. example: targetimages=['r_aqr.CM02.spw5.line0.XXYY.sd.im', 'r_aqr.CM02.spw5.XXYY.sd.cont.im']
products_dir	Name of the data products subdirectory. Defaults to './' example: products_dir='/products'

6.5.3 Examples

1. Export the pipeline results for a single session to the data products directory

```
>>> !mkdir ../products
>>> hsd_exportdata (products_dir='../products')
```

6.6 hsd_flagdata

6.6.1 Task description

The hsd_flagdata data performs basic flagging operations on a list of MeasurementSets including:

- applying online flags
- applying a flagging template
- shadowed antenna data flagging
- scan-based flagging by intent or scan number
- edge channel flagging

Output:

results - The results object for the pipeline task is returned.

6.6.2 Parameter List

parameter name	description
vis	The list of input MeasurementSets. Defaults to the list of MeasurementSets defined in the pipeline context.
autocorr	Flag autocorrelation data.
shadow	Flag shadowed antennas.
scan	Flag a list of scans and intents specified by scannumber and intents.
scannumber	A string containing a comma delimited list of scans to be flagged.
	continues on next page

parameter name	description
intents	A string containing a comma delimited list of intents against which the scans to be flagged are matched. example: '* <i>BANDPASS</i> *'
edgespw	Flag the edge spectral window channels.
fracspw	Fraction of the baseline correlator TDM edge channels to be flagged.
fracspwfps	Fraction of the ACS correlator TDM edge channels to be flagged.
online	Apply the online flags.
fileonline	File containing the online flags. These are computed by the h_init or hif_importdata data tasks. If the online flags files are undefined a name of the form 'msname.flagonline.txt' is assumed.
template	Apply a flagging template.
filetemplate	The name of a text file that contains the flagging template for RFI, birdies, telluric lines, etc. If the template flags files is undefined a name of the form 'msname.flagtemplate.txt' is assumed.
pointing	Apply a flagging template for pointing flag.
filepointing	The name of a text file that contains the flagging template for pointing flag. If the template flags files is undefined a name of the form 'msname.flagpointing.txt' is assumed.
incompleteraster	Apply commands to flag incomplete raster sequence. If this is False, relevant commands in filepointing are simply commented out.

Table	6 –	continued	from	previous	nage
Table	0 -	continueu	nom	previous	page

parameter name	description
hm_tbuff	The heuristic for computing the default time interval padding parameter. The options are 'halfint' and 'manual'. In 'halfint' mode tbuff is set to half the maximum of the median integration time of the science and calibrator target observations.
tbuff	The time in seconds used to pad flagging command time intervals if hm_tbuff='manual'.
qa0	QA0 flags
qa2	QA2 flags
parallel	Execute using CASA HPC functionality, if available. options: 'automatic', 'true', 'false', True, False default: None (equivalent to 'automatic')
flagbackup	Back up any pre-existing flags before applying new ones.

	Table	6 - continued	from	previous	page
--	-------	---------------	------	----------	------

6.6.3 Examples

1. Do basic flagging on a MeasurementSet

```
>>> hsd flagdata()
```

2. Do basic flagging on a MeasurementSet flagging additional scans selected by number as well.

 $>>> hsd_flagdata(scannumber='13,18')$

6.7 hsd_imaging

6.7.1 Task description

The hsd_imaging task generates single dish images per antenna as well as combined image over whole antennas for each field and spectral window. Image configuration (grid size, number of pixels, etc.) is automatically determined based on meta data such as antenna diameter, map extent, etc.

Note that generated images are always in LSRK frame.

Output: results – The results object for the pipeline task is returned.

6.7.2 Parameter List

parameter name	description
mode	Imaging mode controls imaging parameters in the task. Accepts either "line" (spectral line imaging) or "ampcal" (image settings for amplitude calibrator)
restfreq	Rest frequency
infiles	List of data files. These must be a name of MeasurementSets that are registered to context via hsd_importdata task. example: vis=['uidA002_X85c183_X36f.ms', 'uidA002_X85c183_X60b.ms']
field	Data selection by field names or ids. example: "*Sgr*,M100"
spw	Data selection by spw ids. example: "3,4" (generate images for spw 3 and 4)

6.7.3 Examples

1. Generate images with default settings and context

>>> hsd_imaging()

2. Generate images with amplitude calibrator and specific parameters

```
>>> hsd_imaging(mode='ampcal', field='*Sgr*, M100', spw='17, 19')
```

6.8 hsd_importdata

6.8.1 Task description

The hsd_importdata task loads the specified visibility data into the pipeline context unpacking and / or converting it as necessary.

If the overwrite input parameter is set to False and the task is asked to convert an input ASDM input to an MS, then when the output MS already exists in the output directory, the importasdm conversion step is skipped, and the existing MS will be imported instead.

Output:

results - The results object for the pipeline task is returned.

6.8.2 Parameter List

parameter name	description
vis	List of visibility data files. These may be ASDMs, tar files of ASDMs, MSes, or tar files of MSes, If ASDM files are specified, they will be converted to MS format. example: vis=['X227.ms', 'asdms.tar.gz']
session	List of sessions to which the visibility files belong. Defaults to a single session containing all the visibility files, otherwise a session must be assigned to each vis file. example: session=['Session_1', 'Sessions_2']
hm_rasterscan	Heuristics method for raster scan analysis. Two analysis modes, time-domain analysis ('time') and direction analysis ('direction'), are available. Default is 'time'.
parallel	Execute using CASA HPC functionality, if available. options: 'automatic', 'true', 'false', True, False default: None (equivalent to 'automatic')
asis	Creates verbatim copies of the ASDM tables in the output MS. The value given to this option must be a list of table names separated by space characters. example: 'Receiver', ''
process_caldevice	Ingest the ASDM caldevice table. example: True
overwrite	Overwrite existing files on import. When converting ASDM to MS, if overwrite=False and the MS already exists in output directory, then this existing MS dataset will be used instead.
nocopy	Disable copying of MS to working directory
bdfflags	Apply BDF flags on import.
	continues on next page

parameter name	description
datacolumns	
	Dictionary defining the data types of existing columns. The format is:
	{'data': 'data type 1'}
	or
	{'data': 'data type 1', 'corrected': 'data type 2'}
	For ASDMs the data type can only be RAW and one
	can only specify it for the data column.
	For MSes one can define two different data types
	for the DATA and CORRECTED_DATA columns and they
	can be any of the known data types (RAW,
	REGCAL_CONTLINE_ALL, REGCAL_CONTLINE_SCIENCE,
	SELFCAL_CONTLINE_SCIENCE, REGCAL_LINE_SCIENCE,
	SELFCAL_LINE_SCIENCE, BASELINED, ATMCORR). The
	intent selection strings _ALL or _SCIENCE can be
	skipped. In that case the task determines this
	automatically by inspecting the existing intents
	in the dataset.
	Usually, a single datacolumns dictionary is used
	for all datasets. If necessary, one can define a
	list of dictionaries, one for each EB, with
	different setups per EB.
	If no type is specified, {'data':'raw'} will
	be assumed.
1.	
lazy	Use the lazy filter import
	Ose the fazy inter import
with_pointing_correction	
-	add (ASDM::Pointing::encoder - ASDM::Pointing::pointingDirection) to
	the value to be written in MS::Pointing::direction
createmms	
creatennins	Create an MMS

Table 8 - continued from previous page

6.8.3 Examples

1. Load an ASDM list in the ../rawdata subdirectory into the context.

```
>>> hsd_importdata (vis=['../rawdata/uid___A002_X30a93d_X43e', '../rawdata/uid_A002_ax30a93d_X44e'])
```

2. Load an MS in the current directory into the context.

 $>>> hsd_importdata (vis=['uid___A002_X30a93d_X43e.ms'])$

3. Load a tarred ASDM in ../rawdata into the context.

>>> hsd_importdata (vis=['../rawdata/uid___A002_X30a93d_X43e.tar.gz'])

4. Import a list of MeasurementSets.

```
>>> myvislist = ['uid\_\_A002\_X30a93d\_X43e.ms', 'uid\_A002\_x30a93d\_X44e.ms'] \\>>> hsd\_importdata(vis=myvislist)
```

6.9 hsd_k2jycal

6.9.1 Task description

Derive the Kelvin to Jy calibration for list of MeasurementSets.

results - The results object for the pipeline task is returned.

6.9.2 Parameter List

parameter name	description
dbservice	Whether or not accessing Jy/K DB to retrieve conversion factors.
endpoint	Which endpoints to use for query options: 'asdm', 'model-fit', 'interpolation'
	continues on next page

parameter name	description
reffile	
	Path to a file containing Jy/K factors for science data, which must be
	provided by associating calibrator reduction or the observatory
	measurements. Jy/K factor must take into account all efficiencies, i.e.,
	it must be a direct conversion factor from Ta* to Jy. The file must be
	in either MS-based or session-based format. The MS-based format must
	be in an CSV format with five fields: MS name, antenna name, spectral
	window id, polarization string, and Jy/K conversion factor. Example for
	the file is as follows:
	MS,Antenna,Spwid,Polarization,Factor
	uidA002_X316307_X6f.ms,CM03,5,XX,10.0
	uidA002_X316307_X6f.ms,CM03,5,YY,12.0
	uidA002X316307X6f.ms,PM04,5,XX,2.0
	uidA002_X316307_X6f.ms,PM04,5,YY,5.0
	uid1002_1010507_101110,11001,5,111,5.0
	The first line in the above example is a header which may or may not
	exist. Example for the session-based format is as follows:
	#OUSID=XXXXXX
	#OBJECT=Uranus
	#FLUXJY=yy,zz,aa
	#FLUXFREQ=YY,ZZ,AA
	#sessionID,ObservationStartDate(UTC),ObservationEndDate(UTC),
	Antenna,BandCenter(MHz),BandWidth(MHz),POL,Factor
	1,2011-11-11 01:00:00,2011-11-11 01:30:00,CM02,86243.0,500.0,I,10.0
	1,2011-11-11 01:00:00,2011-11-11 01:30:00,CM02,86243.0,1000.0,I,30.0
	1,2011-11-11 01:00:00,2011-11-11 01:30:00,CM03,86243.0,500.0,I,50.0
	1,2011-11-11 01:00:00,2011-11-11 01:30:00,CM03,86243.0,1000.0,I,70.0
	1,2011-11-11 01:00:00,2011-11-11 01:00:00,2010-11-11
	01:30:00,ANONYMOUS,86243.0,500.0,I,30.0
	1,2011-11-11 01:00:00,2011-11-11
	01:30:00,ANONYMOUS,86243.0,1000.0,I,50.0
	2,2011-11-13 01:45:00,2011-11-13 02:15:00,PM04,86243.0,500.0,I,90.0
	2,2011-11-13 01:45:00,2011-11-13 02:15:00,11004,80245:0,500:0,1,50:0
	02:15:00,PM04,86243.0,1000.0,I,110.0
	2,2011-11-13 01:45:00,2011-11-13
	02:15:00,ANONYMOUS,86243.0,500.0,I,90.0
	2,2011-11-13 01:45:00,2011-11-13
	02:15:00,ANONYMOUS,86243.0,1000.0,I,110.0
	Lines starting with '#' are meta data and header.
	The header must exist. The factor to apply is identified by matching the

Table 9 – continued from previous page

parameter name	description
	session ID, antenna name, fragmency and polarization of data in each line of
	session ID, antenna name, frequency and polarization of data in each line of the file. Note the observation date is supplementary information and not used
	for the matching so far. The lines whose antenna name is 'ANONYMOUS' are used
	when there is no measurement for specific antenna in the session. In the above
	example, if science observation of session 1 contains the antenna PM04, Jy/K
	factor for ANONYMOUS antenna will be applied since there is no measurement for
	PM04 in session 1.
	If no file name is specified or specified file doesn't exist, all Jy/K factors are set to 1.0.
	example: reffile='', reffile='working/jyperk.csv'
infiles	List of input MeasurementSets. example: vis='ngc5921.ms'
caltable	Name of output gain calibration tables. example: caltable='ngc5921.gcal'

Table 9 – continued from previous page	Table	9 –	continued	from	previous	page
--	-------	-----	-----------	------	----------	------

6.9.3 Examples

1. Compute the Kevin to Jy calibration tables for a list of MeasurementSets:

 $>>> hsd_k2jycal()$

6.10 hsd_restoredata

6.10.1 Task description

The hsd_restoredata task restores flagged and calibrated data from archived ASDMs and pipeline flagging and calibration data products. Pending archive retrieval support hsd_restoredata assumes that the required products are available in the rawdata_dir in the format produced by the hifa_exportdata task.

hsd_restoredata assumes that the following entities are available in the raw data directory:

- the ASDMs to be restored
- for each ASDM in the input list:
 - a compressed tar file of the final flagversions file, e.g. uid___A002_X30a93d_X43e.ms.flagversions.tar.gz

- a text file containing the applycal instructions, e.g. uid___A002_X30a93d_X43e.ms.calapply.txt
- a compressed tar file containing the caltables for the parent session, e.g. uid__A001_X74_X29.session_3.caltables.tar.gz

hsd_restoredata performs the following operations:

- imports the ASDM(s)
- · removes the default MS.flagversions directory created by the filler
- · restores the final MS.flagversions directory stored by the pipeline
- restores the final set of pipeline flags to the MS
- restores the final calibration state of the MS
- restores the final calibration tables for each MS
- applies the calibration tables to each MS

When importing the ASDM and converting it to a Measurement Set (MS), if the output MS already exists in the output directory, then the importasdm conversion step is skipped, and the existing MS will be imported instead.

Output:

results - The results object for the pipeline task is returned.

6.10.2 Parameter List

parameter name	description
vis	List of raw visibility data files to be restored. Assumed to be in the directory specified by rawdata_dir. example: vis=['uidA002_X30a93d_X43e']
session	List of sessions one per visibility file. example: session=['session_3']
products_dir	Name of the data products directory to copy calibration products from. The parameter is effective only when copytoraw = True. When copytoraw = False, calibration products in rawdata_dir will be used. example: products_dir='myproductspath'
copytoraw	Copy calibration and flagging tables from products_dir to rawdata_dir directory. example: copytoraw=False
	continues on next page

parameter name	description
rawdata_dir	Name of the raw data directory. example: rawdata_dir='myrawdatapath'
lazy	Use the lazy filler option example: lazy=True
bdfflags	Set the BDF flags example: bdfflags=False
ocorr_mode	Set ocorr_mode example: ocorr_mode='ca'
asis	Creates verbatim copies of the ASDM tables in the output MS. The value given to this option must be a list of table names separated by space characters. example: asis='Source Receiver'
hm_rasterscan	Heuristics method for raster scan analysis. Two analysis modes, time-domain analysis ('time') and direction analysis ('direction'), are available. Default is 'time'.

Table 10 – continued from previous page

6.10.3 Examples

1. Restore the pipeline results for a single ASDM in a single session

```
>>> hsd\_restoredata~(vis=['uid\_\_A002\_X30a93d\_X43e'],~session=['session\_1'],~ocorr\_mode='ao')
```

6.11 hsd_skycal

6.11.1 Task description

The hsd_skycal generates a caltable for sky calibration that stores reference spectra, which is to be subtracted from on-source spectra to filter out non-source contribution.

Output:

results - The results object for the pipeline task is returned.

6.11.2 Parameter List

parameter name	description
calmode	Calibration mode. Available options are 'auto' (default), 'ps', 'otf', and 'otfraster'. When 'auto' is set, the task will use preset calibration mode that is determined by inspecting data. 'ps' mode is simple position switching using explicit reference scans. Other two modes, 'otf' and 'otfraster', will generate reference data from scans at the edge of the map. Those modes are intended for OTF observation and the former is defined for generic scanning pattern such as Lissajous, while the latter is specific use for raster scan. options: 'auto', 'ps', 'otf', 'otfraster'
fraction	Sub-parameter for calmode. Edge marking parameter for 'otf' and 'otfraster' mode. It specifies a number of OFF scans as a fraction of total number of data points. options: String style like '20%', or float value less than 1.0. For 'otfraster' mode, you can also specify 'auto'.
noff	Sub-parameter for calmode. Edge marking parameter for 'otfraster' mode. It is used to specify a number of OFF scans near edge directly instead to specify it by fractional number by 'fraction'. If it is set, the value will come before setting by 'fraction'. options: any positive integer value
width	Sub-parameter for calmode. Edge marking parameter for 'otf' mode. It specifies pixel width with respect to a median spatial separation between neighboring two data in time. Default will be fine in most cases. options: any float value
elongated	Sub-parameter for calmode. Edge marking parameter for 'otf' mode. Please set True only if observed area is elongated in one direction.
parallel	Execute using CASA HPC functionality, if available. options: 'automatic', 'true', 'false', True, False default: None (equivalent to 'automatic')

parameter name	description
infiles	List of data files. These must be a name of MeasurementSets that are registered to context via hsd_importdata task. example: vis=['X227.ms', 'X228.ms']
field	Data selection by field name.
spw	Data selection by spw. (defalut all spws) example: '3,4' (generate caltable for spw 3 and 4) ['0','2'] (spw 0 for first data, 2 for second)
scan	Data selection by scan number. (default all scans) example: '22,23' (use scan 22 and 23 for calibration) ['22','24'] (scan 22 for first data, 24 for second)

Table 11 – continued from previous page

6.11.3 Examples

1. Generate caltables for all data managed by context.

```
>>> default(hsd_skycal)
>>> hsd_skycal()
```

6.12 hsd_tsysflag

6.12.1 Task description

Flag deviant system temperature measurements for single dish measurements. This is done by running a sequence of flagging sub-tasks (tests), each looking for a different type of possible error.

If a file with manual Tsys flags is provided with the 'filetemplate' parameter, then these flags are applied prior to the evaluation of the flagging heuristics listed below.

The tests are:

- 1. Flag Tsys spectra with high median values
- 2. Flag Tsys spectra with high median derivatives. This is meant to spot spectra that are 'ringing'.
- 3. Flag the edge channels of the Tsys spectra in each SpW.
- 4. Flag Tsys spectra whose shape is different from that associated with the BANDPASS intent.
- 5. Flag 'birdies'.

6. Flag the Tsys spectra of all antennas in a timestamp and spw if

proportion of antennas already flagged in this timestamp and spw exceeds a threshold, and flag Tsys spectra for all antennas and all timestamps in a spw, if proportion of antennas that are already entirely flagged in all timestamps exceeds a threshold.

Output

results – The results object for the pipeline task is returned.

6.12.2 Parameter List

parameter name	description
vis	List of input MeasurementSets (Not used)
caltable	List of input Tsys calibration tables default: [] - Use the table currently stored in the pipeline context. example: caltable=['X132.ms.tsys.s2.tbl']
flag_nmedian	True to flag Tsys spectra with high median value.
fnm_limit	Flag spectra with median value higher than fnm_limit * median of this measure over all spectra.
fnm_byfield	Evaluate the nmedian metric separately for each field.
flag_derivative	True to flag Tsys spectra with high median derivative.
fd_max_limit	Flag spectra with median derivative higher than fd_max_limit * median of this measure over all spectra.
flag_edgechans	True to flag edges of Tsys spectra.
fe_edge_limit	Flag channels whose channel to channel difference > fe_edge_limit * median across spectrum.
flag_fieldshape	True to flag Tsys spectra with a radically different shape to those of the ff_refintent.
ff_refintent	Data intent that provides the reference shape for 'flag_fieldshape'.

parameter name	description
ff_max_limit	Flag Tsys spectra with 'fieldshape' metric values > ff_max_limit.
flag_birdies	True to flag channels covering sharp spectral features.
fb_sharps_limit	Flag channels bracketing a channel to channel difference > fb_sharps_limit.
flag_toomany	True to flag Tsys spectra for which a proportion of antennas for given timestamp and/or proportion of antennas that are entirely flagged in all timestamps exceeds their respective thresholds.
tmf1_limit	Flag Tsys spectra for all antennas in a timestamp and spw if proportion of antennas already flagged in this timestamp and spw exceeds tmf1_limit.
tmef1_limit	Flag Tsys spectra for all antennas and all timestamps in a spw, if proportion of antennas that are already entirely flagged in all timestamps exceeds tmef1_limit.
metric_order	Order in which to evaluate the flagging metrics that are enabled. Disabled metrics are skipped.
normalize_tsys	True to create a normalized Tsys table that is used to evaluate the Tsys flagging metrics. All newly found flags are also applied to the original Tsys caltable that continues to be used for subsequent calibration.
filetemplate	The name of a text file that contains the manual Tsys flagging template. If the template flags file is undefined, a name of the form 'msname.flagtsystemplate.txt' is assumed.

Table 12 – continued from previous page

6.12.3 Examples

1. Flag Tsys measurements using currently recommended tests:

 $>>> hsd_tsysflag()$

2. Flag Tsys measurements using all recommended tests apart from that using the 'fieldshape' metric:

 $>>> hsd_tsysflag(flag_fieldshape=False)$

CHAPTER

SEVEN

NOBEYAMA

3 tasks available.

task name	description
hsdn_exportdata	Prepare single dish data for export
hsdn_importdata	Imports Nobeyama data into the single dish pipeline
hsdn_restoredata	Restore flagged and calibration single dish data from a pipeline run

7.1 hsdn_exportdata

7.1.1 Task description

The hsdn_exportdata task exports the data defined in the pipeline context and exports it to the data products directory, converting and or packing it as necessary.

The current version of the task exports the following products

- a FITS image for each selected science target source image
- a tar file per ASDM containing the final flags version and blparam
- a tar file containing the file web log

Output:

results - The results object for the pipeline task is returned.

7.1.2 Parameter List

parameter name	description
pprfile	Name of the pipeline processing request to be exported. Defaults to a file matching the template 'PPR_*.xml'. example: pprfile=['PPR_GRB021004.xml']

parameter name	description
targetimages	List of science target images to be exported. Defaults to all science target images recorded in the pipeline context. example: targetimages=['r_aqr.CM02.spw5.line0.XXYY.sd.im', 'r_aqr.CM02.spw5.XXYY.sd.cont.im']
products_dir	Name of the data products subdirectory. Defaults to './' example: products_dir='/products'

Table 1 – continued from previous page

7.1.3 Examples

1. Export the pipeline results for a single session to the data products directory

>>> !mkdir ../products >>> hsdn_exportdata (products_dir='../products')

7.2 hsdn_importdata

7.2.1 Task description

Imports Nobeyama data into the single dish pipeline. The hsdn_importdata task loads the specified visibility data into the pipeline context unpacking and / or converting it as necessary.

If the overwrite input parameter is set to False and the task is asked to convert an input ASDM input to an MS, then when the output MS already exists in the output directory, the importasdm conversion step is skipped, and the existing MS will be imported instead.

Output

results - The results object for the pipeline task is returned.

7.2.2 Parameter List

parameter name	description
vis	List of visibility data files. These may be ASDMs, tar files of ASDMs, MSes, or tar files of MSes, If ASDM files are specified, they will be converted to MS format.
	example: vis=['X227.ms', 'asdms.tar.gz']

parameter name	description
session	List of sessions to which the visibility files belong. Defaults to a single session containing all the visibility files, otherwise a session must be assigned to each vis file. example: session=['Session_1', 'Sessions_2']
hm_rasterscan	Heuristics method for raster scan analysis. Two analysis modes, time-domain analysis ('time') and direction analysis ('direction'), are available. Default is 'time'.
datacolumns	 Dictionary defining the data types of existing columns. The format is: {'data': 'data type 1'} or {'data': 'data type 1', 'corrected': 'data type 2'} For ASDMs the data type can only be RAW and one can only specify it for the data column. For MSes one can define two different data types for the DATA and CORRECTED_DATA columns and they can be any of the known data types (RAW, REGCAL_CONTLINE_ALL, REGCAL_CONTLINE_SCIENCE, SELFCAL_CONTLINE_SCIENCE, BASELINED, ATMCORR). The intent selection strings _ALL or _SCIENCE can be skipped. In that case the task determines this automatically by inspecting the existing intents in the dataset. Usually, a single datacolumns dictionary is used for all datasets. If necessary, one can define a list of dictionaries, one for each EB, with different setups per EB. If no type is specified, {'data':'raw'} will be assumed.

Table 2 – continued from previous page

parameter name	description
overwrite	Overwrite existing files on import. When converting ASDM to MS, if overwrite=False and the MS already exists in output directory, then this existing MS dataset will be used instead.
nocopy	Disable copying of MS to working directory.
createmms	Create an MMS

Table 2 - continued from previous page

7.2.3 Examples

1. Load an ASDM list in the ../rawdata subdirectory into the context:

>>> hsdn_importdata (vis=['../rawdata/uid___A002_X30a93d_X43e', '../rawdata/uid_A002_ $\sigma x30a93d_X44e'])$

2. Load an MS in the current directory into the context:

>>> hsdn_importdata (vis=[uid___A002_X30a93d_X43e.ms])

3. Load a tarred ASDM in ../rawdata into the context:

>>> hsdn_importdata (vis=['../rawdata/uid___A002_X30a93d_X43e.tar.gz'])

4. Import a list of MeasurementSets:

```
>>> myvislist = ['uid\_\_A002\_X30a93d\_X43e.ms', 'uid\_A002\_x30a93d\_X44e.ms'] \\>>> hsdn_importdata(vis=myvislist)
```

7.3 hsdn_restoredata

7.3.1 Task description

The hsdn_restoredata task restores flagged and calibrated data from archived ASDMs and pipeline flagging and calibration data products. Pending archive retrieval support hsdn_restoredata assumes that the required products are available in the rawdata_dir in the format produced by the hifa_exportdata task.

hsdn_restoredata assumes that the following entities are available in the raw data directory:

- the ASDMs to be restored
- for each ASDM in the input list:
 - a compressed tar file of the final flagversions file, e.g. uid___A002_X30a93d_X43e.ms.flagversions.tar.gz
 - a text file containing the applycal instructions, e.g. uid___A002_X30a93d_X43e.ms.calapply.txt

- a compressed tar file containing the caltables for the parent session, e.g. uid__A001_X74_X29.session_3.caltables.tar.gz

hsdn_restoredata performs the following operations:

- imports the ASDM(s)
- removes the default MS.flagversions directory created by the filler
- restores the final MS.flagversions directory stored by the pipeline
- restores the final set of pipeline flags to the MS
- restores the final calibration state of the MS
- restores the final calibration tables for each MS
- applies the calibration tables to each MS

When importing the ASDM and converting it to a Measurement Set (MS), if the output MS already exists in the output directory, then the importasdm conversion step is skipped, and the existing MS will be imported instead.

Output:

results - The results object for the pipeline task is returned.

7.3.2 Parameter List

parameter name	description
vis	List of raw visibility data files to be restored. Assumed to be in the directory specified by rawdata_dir. example: vis=['uidA002_X30a93d_X43e']
caltable	Name of output gain calibration tables. example: caltable='ngc5921.gcal'

parameter name	description
reffile	
	Path to a file containing scaling factors between beams. The format is
	equals to jyperk.csv with five fields:
	MS name, beam name (instead of antenna name), spectral window id,
	polarization string, and the scaling factor.
	Example for the file is as follows:
	#MS,Beam,Spwid,Polarization,Factor
	mg2-20181016165248-181017.ms,NRO-BEAM0,0,I,1.000000000
	mg2-20181016165248-181017.ms,NRO-BEAM0,1,I,1.000000000
	mg2-20181016165248-181017.ms,NRO-BEAM0,2,I,1.000000000
	mg2-20181016165248-181017.ms,NRO-BEAM0,3,I,1.000000000
	mg2-20181016165248-181017.ms,NRO-BEAM1,0,I,3.000000000
	mg2-20181016165248-181017.ms,NRO-BEAM1,1,I,3.000000000
	mg2-20181016165248-181017.ms,NRO-BEAM1,2,I,3.000000000
	mg2-20181016165248-181017.ms,NRO-BEAM1,3,I,3.000000000
	mg2-20181016165248-181017.ms,NRO-BEAM2,0,I,0.500000000
	mg2-20181016165248-181017.ms,NRO-BEAM2,1,I,0.500000000
	mg2-20181016165248-181017.ms,NRO-BEAM2,2,I,0.500000000
	mg2-20181016165248-181017.ms,NRO-BEAM2,3,I,0.500000000
	mg2-20181016165248-181017.ms,NRO-BEAM3,0,I,2.000000000
	mg2-20181016165248-181017.ms,NRO-BEAM3,1,I,2.000000000
	mg2-20181016165248-181017.ms,NRO-BEAM3,2,I,2.000000000
	mg2-20181016165248-181017.ms,NRO-BEAM3,3,I,2.000000000
	If no file name is specified or specified file doesn't exist,
	all the factors are set to 1.0.
	example: reffile='', reffile='nroscalefactor.csv'
products_dir	Name of the data products directory. Currently not used.
	example: products_dir='myproductspath'
copytoraw	
	Copy calibration and flagging tables to raw data directory. example: copytoraw=False
rawdata_dir	
	Name of the raw data directory.
	example: rawdata_dir='myrawdatapath'
	continues on next nage

|--|

parameter name	description
hm_rasterscan	
	Heuristics method for raster scan analysis. Two analysis modes,
	time-domain analysis ('time') and direction analysis ('direction'), are
	available.
	Default is 'time'.

Table 3 – continued from previous page

7.3.3 Examples

1. Restore the pipeline results for a single ASDM in a single session

 $>>> hsdn_restoredata~(vis=['mg2-20181016165248-190320.ms'], reffile='nroscalefactor.csv')$